The Adaptive Delaunay Tessellation: a neighborhood covering meshing technique

In this paper we propose an unstructured hybrid tessellation of a scattered point set that minimally covers the proximal space around each point. The mesh is automatically obtained in a bounded period of time by transforming an initial Delaunay tessellation. Novel types of polygonal interpolants are used for interpolation applications and the geometric qualities of the elements make them also useful for discretization schemes. The approach proves to be superior to classical Delaunay one in a finite element context.

[1]  G. L. Dirichlet Über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. , 1850 .

[2]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .

[3]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .

[4]  C. Lawson Software for C1 Surface Interpolation , 1977 .

[5]  Robin Sibson,et al.  Locally Equiangular Triangulations , 1978, Comput. J..

[6]  Richard Franke,et al.  Smooth interpolation of large sets of scattered data , 1980 .

[7]  R. Sibson A vector identity for the Dirichlet tessellation , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.

[8]  R. Sibson,et al.  A brief description of natural neighbor interpolation , 1981 .

[9]  D. F. Watson Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..

[10]  A. D. Gordon,et al.  Interpreting multivariate data , 1982 .

[11]  M. Sambridge,et al.  Geophysical parametrization and interpolation of irregular data using natural neighbours , 1995 .

[12]  V. D. Ivanov,et al.  The non-Sibsonian interpolation : A new method of interpolation of the values of a function on an arbitrary set of points , 1997 .

[13]  T. Belytschko,et al.  THE NATURAL ELEMENT METHOD IN SOLID MECHANICS , 1998 .

[14]  Franz Aurenhammer,et al.  Voronoi Diagrams , 2000, Handbook of Computational Geometry.

[15]  Jiun-Shyan Chen,et al.  A stabilized conforming nodal integration for Galerkin mesh-free methods , 2001 .

[16]  Jonathan Richard Shewchuk,et al.  What is a Good Linear Element? Interpolation, Conditioning, and Quality Measures , 2002, IMR.

[17]  Michael S. Floater,et al.  Mean value coordinates , 2003, Comput. Aided Geom. Des..

[18]  E. Oñate,et al.  The extended Delaunay tessellation , 2003 .

[19]  N. Sukumar,et al.  Conforming polygonal finite elements , 2004 .

[20]  N. Sukumar,et al.  Archives of Computational Methods in Engineering Recent Advances in the Construction of Polygonal Finite Element Interpolants , 2022 .

[21]  Christopher Dyken,et al.  Preferred directions for resolving the non-uniqueness of Delaunay triangulations , 2006, Comput. Geom..

[22]  Mathieu Desbrun,et al.  Barycentric coordinates for convex sets , 2007, Adv. Comput. Math..