Silicon photonic quantum computing with spin qubits

Universal quantum computing holds the promise to fundamentally change today’s information-based society, yet a hardware platform that will provide a clear path to fault-tolerant quantum computing remains elusive. One recently proposed platform involves the use of circuit-bound photons to build cluster states and perform one-way measurement-based quantum computations on arrays of long-coherence-time solid-state spin qubits. Herein, we discuss the challenges that are faced during any practical implementation of this architecture by itemizing the key physical building blocks and the constraints imposed on the spin qubits and the photonic circuit components by the requirements of fault-tolerant performance. These considerations point to silicon as a leading candidate to host such a platform, and a roadmap for developing a silicon photonic circuit-based platform for measurement-based, fault-tolerant universal quantum computing is offered.

[1]  Mihir K. Bhaskar,et al.  An integrated diamond nanophotonics platform for quantum-optical networks , 2016, Science.

[2]  M. Y. Simmons,et al.  A single atom transistor , 2012, 2012 IEEE Silicon Nanoelectronics Workshop (SNW).

[3]  Geert Morthier,et al.  III-V-on-Si photonic integrated circuits realized using micro-transfer-printing , 2019, APL Photonics.

[4]  Sae Woo Nam,et al.  Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution. , 2018, Optics express.

[5]  Harald Giessen,et al.  Single Quantum Dot with Microlens and 3D-Printed Micro-objective as Integrated Bright Single-Photon Source , 2017, ACS photonics.

[6]  Guo-Qiang Lo,et al.  Silicon photonic platforms for mid-infrared applications [Invited] , 2017 .

[7]  Kae Nemoto,et al.  High-fidelity spin measurement on the nitrogen-vacancy center , 2017, 1705.00156.

[8]  Dirk Englund,et al.  Hybrid Integration of Solid-State Quantum Emitters on a Silicon Photonic Chip. , 2017, Nano letters.

[9]  Sae Woo Nam,et al.  Recent advances in superconducting nanowire single-photon detector technology for exoplanet transit spectroscopy in the mid-infrared , 2021, Journal of Astronomical Telescopes, Instruments, and Systems.

[10]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[11]  Xiaobo Zhu,et al.  Superconducting quantum computing: a review , 2020, Science China Information Sciences.

[12]  Hyatt M. Gibbs,et al.  Scanning a photonic crystal slab nanocavity by condensation of xenon , 2005 .

[13]  Adetunmise C. Dada,et al.  Two-photon Quantum Interference and Entanglement at 2 {\mu}m , 2019 .

[14]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[15]  S. Burger,et al.  Enhanced photon-extraction efficiency from deterministic quantum-dot microlenses , 2013, 1312.6298.

[16]  P. Deotare,et al.  High quality factor photonic crystal nanobeam cavities , 2009, 0901.4158.

[17]  Carsten Rockstuhl,et al.  Cavity-Enhanced and Ultrafast Superconducting Single-Photon Detectors. , 2016, Nano letters.

[18]  J. O'Brien,et al.  Witnessing eigenstates for quantum simulation of Hamiltonian spectra , 2016, Science Advances.

[19]  Ming-Cheng Chen,et al.  Towards optimal single-photon sources from polarized microcavities , 2019, Nature Photonics.

[20]  M. L. W. Thewalt,et al.  Hyperfine Stark effect of shallow donors in silicon , 2014, 1408.4375.

[21]  S. F. Covre da Silva,et al.  Reconfigurable photonics with on-chip single-photon detectors , 2021, Nature communications.

[22]  M. Atatüre,et al.  Quantum dot spin coherence governed by a strained nuclear environment , 2016, Nature Communications.

[23]  High-resolution absorption spectroscopy of the deep impurities S and Se in S 28 i revealing the S 77 e hyperfine splitting , 2009 .

[24]  N. Linke,et al.  High-fidelity spatial and polarization addressing of Ca-43 qubits using near-field microwave control , 2016, 1601.02696.

[25]  Li Li,et al.  Experimental quantum repeater without quantum memory , 2019, Nature Photonics.

[26]  Fabio Sciarrino,et al.  Integrated photonic quantum technologies , 2019, Nature Photonics.

[27]  M. Markham,et al.  Coherent optical transitions in implanted nitrogen vacancy centers. , 2014, Nano letters.

[28]  L. Childress,et al.  Cavity quantum electrodynamics with color centers in diamond , 2020, 2101.02793.

[29]  Nan Gao,et al.  Mid-Infrared Tunable Laser-Based Broadband Fingerprint Absorption Spectroscopy for Trace Gas Sensing: A Review , 2019, Applied Sciences.

[30]  Raphaël Van Laer,et al.  A silicon‐organic hybrid platform for quantum microwave-to-optical transduction , 2019, Quantum Science and Technology.

[31]  A. Greentree,et al.  Splitting of photoluminescent emission from nitrogen–vacancy centers in diamond induced by ion-damage-induced stress , 2013, 1302.2539.

[32]  K. Itoh,et al.  Phonon Engineering in Isotopically Disordered Silicon Nanowires. , 2015, Nano letters.

[33]  Sean D Barrett,et al.  Fault tolerant quantum computation with very high threshold for loss errors. , 2010, Physical review letters.

[34]  Warit Asavanant,et al.  Temporal-mode continuous-variable three-dimensional cluster state for topologically protected measurement-based quantum computation , 2020, Physical Review A.

[35]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[36]  Douglas D. Coolbaugh,et al.  The AIM Photonics MPW: A Highly Accessible Cutting Edge Technology for Rapid Prototyping of Photonic Integrated Circuits , 2019, IEEE Journal of Selected Topics in Quantum Electronics.

[37]  T. Asano,et al.  Ultra-high-Q photonic double-heterostructure nanocavity , 2005 .

[38]  T. Ohshima,et al.  Universal coherence protection in a solid-state spin qubit , 2020, Science.

[39]  D. Simons,et al.  A compact, ultra-high vacuum ion source for isotopically enriching and depositing 28Si thin films. , 2019, The Review of scientific instruments.

[40]  J. Hartmann,et al.  99.992% 28Si CVD-grown epilayer on 300 mm substrates for large scale integration of silicon spin qubits , 2018, Journal of Crystal Growth.

[41]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[42]  S. Simmons,et al.  A photonic platform for donor spin qubits in silicon , 2016, Science Advances.

[43]  T. Ohshima,et al.  Electrically driven optical interferometry with spins in silicon carbide , 2019, Science Advances.

[44]  R. Feynman Simulating physics with computers , 1999 .

[45]  John Chiaverini,et al.  Trapped-ion quantum computing: Progress and challenges , 2019, Applied Physics Reviews.

[46]  Dirk Englund,et al.  Large-scale integration of artificial atoms in hybrid photonic circuits , 2020, Nature.

[47]  Elham Kashefi,et al.  Demonstration of Blind Quantum Computing , 2011, Science.

[48]  H. Giessen,et al.  Optical properties of photoresists for femtosecond 3D printing: refractive index, extinction, luminescence-dose dependence, aging, heat treatment and comparison between 1-photon and 2-photon exposure , 2019, Optical Materials Express.

[49]  M. Veldhorst,et al.  Quantum Transport Properties of Industrial Si28/SiO228 , 2018, Physical Review Applied.

[50]  Alán Aspuru-Guzik,et al.  Quantum computational chemistry , 2018, Reviews of Modern Physics.

[51]  R. Hadfield Single-photon detectors for optical quantum information applications , 2009 .

[52]  Damien Bonneau,et al.  Silicon Quantum Photonics , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[53]  W. Pernice,et al.  Superconducting nanowire single-photon detector implemented in a 2D photonic crystal cavity , 2018 .

[54]  N. T. Son,et al.  Electrical and optical control of single spins integrated in scalable semiconductor devices , 2019, Science.

[55]  J. Kennedy,et al.  28Si+ ion beams from Penning ion source based implanter systems for near-surface isotopic purification of silicon. , 2018, The Review of scientific instruments.

[56]  M. Sellars,et al.  Coherence time of over a second in a telecom-compatible quantum memory storage material , 2016, Nature Physics.

[57]  Ion implantation for deterministic single atom devices. , 2017, The Review of scientific instruments.

[58]  Austin G. Fowler,et al.  Experimental demonstration of topological error correction , 2009, Nature.

[59]  Kae Nemoto,et al.  From quantum fusiliers to high-performance networks , 2009 .

[60]  Hoi-Kwong Lo,et al.  All-photonic quantum repeaters , 2013, Nature Communications.

[61]  J. O'Brien,et al.  Simulating the vibrational quantum dynamics of molecules using photonics , 2018, Nature.

[62]  L. Pavesi,et al.  Near-ideal spontaneous photon sources in silicon quantum photonics , 2020, Nature Communications.

[63]  Philip Walther,et al.  Demonstration of measurement-only blind quantum computing , 2016, 1601.02451.

[64]  C D Hill,et al.  Two-electron spin correlations in precision placed donors in silicon , 2018, Nature Communications.

[65]  Nicolas A. F. Jaeger,et al.  Silicon Photonic Circuit Design Using Rapid Prototyping Foundry Process Design Kits , 2019, IEEE Journal of Selected Topics in Quantum Electronics.

[66]  M. Wegener,et al.  Low-loss fiber-to-chip couplers with ultrawide optical bandwidth , 2019, APL Photonics.

[67]  O. Painter,et al.  Ultra-low-loss optical delay line on a silicon chip , 2012, Nature Communications.

[68]  Simei Mao,et al.  State-of-the-Art and Perspectives on Silicon Waveguide Crossings: A Review , 2020, Micromachines.

[69]  T. Ralph,et al.  Universal quantum computation with continuous-variable cluster states. , 2006, Physical review letters.

[70]  G. Davies,et al.  The optical properties of luminescence centres in silicon , 1989 .

[71]  E. Haller,et al.  Ultrahigh thermal conductivity of isotopically enriched silicon , 2018 .

[72]  C. M. Natarajan,et al.  Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement. , 2012, Optics express.

[73]  Harris,et al.  Nonlinear optical processes using electromagnetically induced transparency. , 1990, Physical review letters.

[74]  Simon J. Devitt,et al.  Photonic Quantum Networks formed from NV− centers , 2014, Scientific Reports.

[75]  A. Varon,et al.  A trapped-ion-based quantum byte with 10−5 next-neighbour cross-talk , 2014, Nature Communications.

[76]  Vincenzo Savona,et al.  Automated optimization of photonic crystal slab cavities , 2014, Scientific Reports.

[77]  G. Lo,et al.  Selective tuning of high-Q silicon photonic crystal nanocavities via laser-assisted local oxidation. , 2011, Optics express.

[78]  Christine Silberhorn,et al.  Single-photon sources: Approaching the ideal through multiplexing. , 2020, The Review of scientific instruments.

[79]  Charles Santori,et al.  Optical and spin coherence properties of nitrogen-vacancy centers placed in a 100 nm thick isotopically purified diamond layer. , 2012, Nano letters.

[80]  Andreas D. Wieck,et al.  Nanomechanical single-photon routing , 2018, Optica.

[81]  Dirk Englund,et al.  Dipole induced transparency in waveguide coupled photonic crystal cavities , 2008 .

[82]  J. P. Sprengers,et al.  Waveguide superconducting single-photon detectors for integrated quantum photonic circuits , 2011, 1108.5107.

[83]  Dirk Englund,et al.  Hybrid integration methods for on-chip quantum photonics , 2019 .

[84]  T.D. Vo,et al.  Integrated spatial multiplexing of heralded single-photon sources , 2013, Nature communications.

[85]  Single-shot optical readout of a quantum bit using cavity quantum electrodynamics , 2016, 1602.04367.

[86]  Sabine Zakel,et al.  A new generation of 99.999% enriched 28Si single crystals for the determination of Avogadro’s constant , 2017 .

[87]  M. Plenio,et al.  Initialization and Readout of Nuclear Spins via a Negatively Charged Silicon-Vacancy Center in Diamond. , 2019, Physical review letters.

[88]  Dirk Englund,et al.  Material platforms for spin-based photonic quantum technologies , 2018, Nature Reviews Materials.

[89]  H. Riemann,et al.  Enrichment of silicon for a better kilogram , 2010 .

[90]  Ying Li,et al.  High threshold distributed quantum computing with three-qubit nodes , 2012, 1204.0443.

[91]  H. Kimble Strong interactions of single atoms and photons in cavity QED , 1998 .

[92]  S. Simmons,et al.  Characterization of the Si : Se+ Spin-Photon Interface , 2018, Physical Review Applied.

[93]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[94]  Ming C. Wu,et al.  Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers , 2016 .

[95]  D. Simons,et al.  Enriching 28Si beyond 99.9998 % for semiconductor quantum computing , 2014 .

[96]  Ute Troppenz,et al.  InP/Silicon Hybrid External-Cavity Lasers (ECL) using Photonic Wirebonds as Coupling Elements , 2020, 2020 Optical Fiber Communications Conference and Exhibition (OFC).

[97]  Ming C. Wu,et al.  Silicon Photonic MEMS Phase-Shifter. , 2019, Optics express.

[98]  Jian-Wei Pan,et al.  18-Qubit Entanglement with Six Photons' Three Degrees of Freedom. , 2018, Physical review letters.

[99]  Rufus L. Cone,et al.  Recent progress in developing new rare earth materials for hole burning and coherent transient applications , 2002 .

[100]  R. Mirin,et al.  Direct measurement of polarization resolved transition dipole moment in InGaAs/GaAs quantum dots , 2002, CLEO 2002.

[101]  T. Rudolph,et al.  How good must single photon sources and detectors be for efficient linear optical quantum computation? , 2007, Physical review letters.

[102]  E. Knill,et al.  Theory of quantum error-correcting codes , 1997 .

[103]  Ellen Schelew,et al.  Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation , 2014, Nature Communications.

[104]  Sven Burger,et al.  Deterministic Integration of Quantum Dots into on-Chip Multimode Interference Beamsplitters Using in Situ Electron Beam Lithography. , 2017, Nano letters.

[105]  K. Lister,et al.  Slotted photonic crystal nanobeam cavity with an ultrahigh quality factor-to-mode volume ratio. , 2013, Optics express.

[106]  A. Wieck,et al.  A bright and fast source of coherent single photons , 2020, Nature Nanotechnology.

[107]  Jonathan M. Kindem,et al.  Control and single-shot readout of an ion embedded in a nanophotonic cavity , 2019, Nature.

[108]  J. Joannopoulos,et al.  Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency. , 1996, Physical review. B, Condensed matter.

[109]  Terry Rudolph,et al.  Why I am optimistic about the silicon-photonic route to quantum computing , 2016, 1607.08535.

[110]  F. Jelezko,et al.  Multiple intrinsically identical single-photon emitters in the solid state , 2013, Nature Communications.

[111]  W. Pernice,et al.  Reconfigurable Nanophotonic Circuitry Enabled by Direct-Laser-Writing , 2020, IEEE Journal of Selected Topics in Quantum Electronics.

[112]  E. Janzén,et al.  Multivalley spin splitting of 1 s states for sulfur, selenium, and tellurium donors in silicon , 1982 .

[113]  N. Sinitsyn,et al.  Three-stage decoherence dynamics of an electron spin qubit in an optically active quantum dot , 2014, Nature Physics.

[114]  J. P. Dehollain,et al.  Quantifying the quantum gate fidelity of single-atom spin qubits in silicon by randomized benchmarking , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[115]  R. Raussendorf,et al.  Long-range quantum entanglement in noisy cluster states (6 pages) , 2004, quant-ph/0407255.

[116]  Edoardo Charbon,et al.  CMOS-based cryogenic control of silicon quantum circuits. , 2021, Nature.

[117]  Val Zwiller,et al.  Hybrid integrated quantum photonic circuits , 2020, Nature Photonics.

[118]  Frank K. Tittel,et al.  Mid-Infrared Laser Applications in Spectroscopy , 2003 .

[119]  M. Thiel,et al.  Two‐Photon Polymerization of Nanocomposites for the Fabrication of Transparent Fused Silica Glass Microstructures , 2021, Advanced materials.

[120]  Gregor G. Taylor,et al.  Photon counting LIDAR at 2.3µm wavelength with superconducting nanowires. , 2019, Optics express.

[121]  C. Schneider,et al.  Purcell enhanced and indistinguishable single-photon generation from quantum dots coupled to on-chip integrated ring resonators. , 2020, Nano letters.

[122]  M. L. W. Thewalt,et al.  Quantum Information Storage for over 180 s Using Donor Spins in a 28Si “Semiconductor Vacuum” , 2012, Science.

[123]  Jens H. Schmid,et al.  Roadmap on silicon photonics , 2016 .

[124]  R. Hanson,et al.  Optically Coherent Nitrogen-Vacancy Centers in Micrometer-Thin Etched Diamond Membranes , 2019, Nano letters.

[125]  Saikat Guha,et al.  Blueprint for a Scalable Photonic Fault-Tolerant Quantum Computer , 2021, Quantum.

[126]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[127]  Shanhui Fan,et al.  Coupling of modes analysis of resonant channel add-drop filters , 1999 .

[128]  E. Waks,et al.  Cavity-Enhanced Optical Readout of a Single Solid-State Spin , 2017, 1706.05582.

[129]  Terry Rudolph,et al.  Loss tolerance in one-way quantum computation via counterfactual error correction. , 2006, Physical review letters.

[130]  E. C. Lightowlers,et al.  Hydrogen-related luminescence centres in thermally treated Czochralski silicon , 1994 .

[131]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[132]  L. J. Sham,et al.  Rabi oscillations of excitons in single quantum dots. , 2001, Physical review letters.

[133]  Gregor Weihs,et al.  Hyper-entanglement of photons emitted by a quantum dot , 2017, 2017 Conference on Lasers and Electro-Optics (CLEO).

[134]  Iman Esmaeil Zadeh,et al.  Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution , 2016, 1611.02726.

[135]  O. Okunev,et al.  Picosecond superconducting single-photon optical detector , 2001 .

[136]  Pavel Sekatski,et al.  A gated quantum dot strongly coupled to an optical microcavity , 2019, Nature.

[137]  M. Thewalt,et al.  Isotope effects on the optical spectra of semiconductors , 2005 .

[138]  Ronald Hanson,et al.  Quantum technologies with optically interfaced solid-state spins , 2018, Nature Photonics.

[139]  Yongmei Huang,et al.  Satellite-to-ground quantum key distribution , 2017, Nature.

[140]  Andrew S. Dzurak,et al.  A single-atom electron spin qubit in silicon , 2012, Nature.

[141]  David J. Thomson,et al.  Silicon optical modulators , 2010 .

[142]  A. Lita,et al.  Quantum circuits with many photons on a programmable nanophotonic chip , 2021, Nature.

[143]  Kimble,et al.  Unconditional quantum teleportation , 1998, Science.

[144]  C. Monroe,et al.  Co-designing a scalable quantum computer with trapped atomic ions , 2016, npj Quantum Information.

[145]  Jeff F. Young,et al.  A Quantum Computer Architecture Based on Silicon Donor Qubits Coupled by Photons , 2020, Advanced Quantum Technologies.

[147]  M. Helm,et al.  Engineering telecom single-photon emitters in silicon for scalable quantum photonics. , 2020, Optics express.

[148]  Simon J. Devitt,et al.  Photonic Architecture for Scalable Quantum Information Processing in Diamond , 2013, 1309.4277.

[149]  M. Thewalt,et al.  Impurity absorption spectroscopy in 28Si: the importance of inhomogeneous isotope broadening. , 2003, Physical review letters.

[150]  A. Lemaître,et al.  Coherent manipulation of a solid-state artificial atom with few photons , 2016, Nature Communications.

[151]  S. Reitzenstein,et al.  Integrated nanophotonics for the development of fully functional quantum circuits based on on-demand single-photon emitters , 2021, APL Photonics.

[152]  J. Leuthold,et al.  Nonlinear silicon photonics , 2010 .

[153]  A. Reiserer,et al.  Erbium dopants in nanophotonic silicon waveguides , 2020 .

[154]  Xin Tu,et al.  State of the Art and Perspectives on Silicon Photonic Switches , 2019, Micromachines.

[155]  A. Badolato,et al.  Cryogenic photoluminescence imaging system for nanoscale positioning of single quantum emitters. , 2016, The Review of scientific instruments.

[156]  M. Lukin,et al.  Silicon-Vacancy Spin Qubit in Diamond: A Quantum Memory Exceeding 10 ms with Single-Shot State Readout. , 2017, Physical review letters.

[157]  M. Markham,et al.  Observation of an environmentally insensitive solid-state spin defect in diamond , 2017, Science.

[158]  M. Veldhorst,et al.  Silicon CMOS architecture for a spin-based quantum computer , 2016, Nature Communications.

[159]  C. M. Natarajan,et al.  Superconducting nanowire single-photon detectors: physics and applications , 2012, 1204.5560.

[160]  Matthew J. Sellars,et al.  Optical addressing of an individual erbium ion in silicon , 2013, Nature.

[161]  Guangwen Yang,et al.  Quantum computational advantage using photons , 2020, Science.

[162]  Morten Kjaergaard,et al.  Superconducting Qubits: Current State of Play , 2019, Annual Review of Condensed Matter Physics.

[163]  M. Lauermann,et al.  Hybrid multi-chip assembly of optical communication engines by in situ 3D nano-lithography , 2020, Light: Science & Applications.

[164]  Xiaodong Yang,et al.  Digital resonance tuning of high-Q/Vm silicon photonic crystal nanocavities by atomic layer deposition , 2007, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[165]  A. Dibos,et al.  Atomic Source of Single Photons in the Telecom Band. , 2017, Physical review letters.

[166]  Mouktik Raha,et al.  Optical quantum nondemolition measurement of a single rare earth ion qubit , 2020, Nature Communications.

[167]  H. Briegel,et al.  Measurement-based quantum computation , 2009, 0910.1116.

[168]  Jakob Reichel,et al.  Measurement of the internal state of a single atom without energy exchange , 2011, Nature.

[169]  V. Savona,et al.  High-Q silicon photonic crystal cavity for enhanced optical nonlinearities , 2013, 1311.0997.

[170]  R. Nawrodt,et al.  Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures , 2012 .

[171]  D. L. McAuslan,et al.  Strong-coupling cavity QED using rare-earth-metal-ion dopants in monolithic resonators: What you can do with a weak oscillator , 2009, 0908.1994.

[172]  Dario Gerace,et al.  Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million , 2014 .

[173]  Gregory R. Steinbrecher,et al.  Large-scale quantum photonic circuits in silicon , 2016 .

[174]  Iulia Georgescu,et al.  Trapped ion quantum computing turns 25 , 2020 .

[175]  S. Assefa,et al.  Heralded single photons from a silicon nanophotonic chip , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[176]  Edo Waks,et al.  Dipole induced transparency in drop-filter cavity-waveguide systems. , 2006, Physical review letters.

[177]  H. Thacker,et al.  Ultralow-loss, high-density SOI optical waveguide routing for macrochip interconnects. , 2012, Optics express.

[178]  Nicolas Sangouard,et al.  Quantum Optical Memory Protocols in Atomic Ensembles , 2018, 1801.10023.

[179]  M. Kamp,et al.  Waveguide photon-number-resolving detectors for quantum photonic integrated circuits , 2013, 1308.4606.

[180]  Anthony Laing,et al.  Generation and sampling of quantum states of light in a silicon chip , 2018, Nature Physics.

[181]  C. Schneider,et al.  Deterministic implementation of a bright, on-demand single photon source with near-unity indistinguishability via quantum dot imaging. , 2016, Optica.

[182]  Jian-Wei Pan,et al.  An integrated space-to-ground quantum communication network over 4,600 kilometres , 2021, Nature.

[183]  Jian-Wei Pan,et al.  On-Demand Semiconductor Source of Entangled Photons Which Simultaneously Has High Fidelity, Efficiency, and Indistinguishability. , 2019, Physical review letters.

[184]  S. Braunstein,et al.  Quantum computation over continuous variables , 1998 .

[185]  R. Raussendorf,et al.  A fault-tolerant one-way quantum computer , 2005, quant-ph/0510135.

[186]  J Fan,et al.  Invited review article: Single-photon sources and detectors. , 2011, The Review of scientific instruments.

[187]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[188]  Guang-Can Guo,et al.  Semiconductor quantum computation , 2018, National science review.

[189]  Matthew D. Shaw,et al.  Towards single-photon spectroscopy in the mid-infrared using superconducting nanowire single-photon detectors , 2019, Defense + Commercial Sensing.

[190]  Edo Waks,et al.  Generating entanglement between quantum dots with different resonant frequencies based on dipole-induced transparency , 2008 .

[191]  Jones,et al.  Interstitial-Carbon Hydrogen Interaction in Silicon. , 1996, Physical review letters.

[192]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[193]  Nicolas A. F. Jaeger,et al.  SiEPICfab: the Canadian silicon photonics rapid-prototyping foundry for integrated optics and quantum computing , 2021, OPTO.

[194]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[195]  Geoff J. Pryde,et al.  Photonic quantum information processing: A concise review , 2019, Applied Physics Reviews.

[196]  P. Lodahl,et al.  Interfacing single photons and single quantum dots with photonic nanostructures , 2013, 1312.1079.

[197]  S. Wehner,et al.  Quantum internet: A vision for the road ahead , 2018, Science.

[198]  H. Riemann,et al.  Photoluminescence of isotopically purified silicon: how sharp are bound exciton transitions? , 2001, Physical review letters.

[199]  G. Guo,et al.  Single-photon-level quantum image memory based on cold atomic ensembles , 2013, Nature Communications.

[200]  Wolfram Pernice,et al.  Waveguide-integrated superconducting nanowire single-photon detectors , 2018, Nanophotonics.

[201]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[203]  Gerhard Klimeck,et al.  Electrically controlling single-spin qubits in a continuous microwave field , 2015, Science Advances.

[204]  M. Y. Simmons,et al.  A two-qubit gate between phosphorus donor electrons in silicon , 2019, Nature.

[205]  R. Morandotti,et al.  Integrated sources of photon quantum states based on nonlinear optics , 2017, Light: Science & Applications.

[206]  K. Saeedi,et al.  Room-Temperature Quantum Bit Storage Exceeding 39 Minutes Using Ionized Donors in Silicon-28 , 2013, Science.

[207]  Michal Lipson,et al.  Low-loss silicon platform for broadband mid-infrared photonics , 2017, 1703.03517.

[208]  Lukas Chrostowski,et al.  Silicon Photonics Circuit Design: Methods, Tools and Challenges , 2018 .

[209]  David Hillerkuss,et al.  Photonic Wire Bonds for Terabit/s Chip-to-Chip Interconnects , 2011, 1111.0651.

[210]  K. Berggren,et al.  Efficient single photon detection from 500 nm to 5 μm wavelength. , 2012, Nano letters.

[211]  Aleksandar Nesic,et al.  Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding , 2018, Optica.

[212]  R. Blatt,et al.  Quantum information transfer using photons , 2014, Nature Photonics.

[213]  Warit Asavanant,et al.  Generation of time-domain-multiplexed two-dimensional cluster state , 2019, Science.

[214]  Mats Eriksson,et al.  Quantum computing with semiconductor spins , 2019, Physics Today.

[215]  J. Vučković,et al.  Integrated Quantum Photonics with Silicon Carbide: Challenges and Prospects , 2020, 2010.15700.

[216]  Rufus L. Cone,et al.  Effects of Magnetic Field Orientation on Optical Decoherence in Er3+: Y2 SiO5 , 2009 .

[217]  L. Chrostowski,et al.  Silicon Photonics Design: From Devices to Systems , 2015 .

[218]  Matthew E. Trusheim,et al.  Quantum nanophotonics with group IV defects in diamond , 2019, Nature Communications.

[219]  Alán Aspuru-Guzik,et al.  Quantum Chemistry in the Age of Quantum Computing. , 2018, Chemical reviews.