Interactive Multicriteria Methods in Portfolio Decision Analysis

Decision Analysis is a constructive, learning process. This is particularly true of Portfolio Decision Analysis (PDA) where the number of elicitation judgements is typically very large and the alternatives under consideration are a combinatorial set and so cannot be listed and examined explicitly. Consequently, PDA is to some extent an interactive process. In this chapter we discuss what form that interactivity might take, discussing first of all how the process of asking for judgements should be staged and managed, and secondly what assumptions should be made about the substantive value models which the analyst assumes. To make the discussion concrete, we present two interactive procedures based on extended dominance concepts which assume linear additive and concave piecewise-linear additive value functions, respectively.

[1]  Alec Morton,et al.  Healthcare prioritisation at the local level: a socio-technical approach , 2011 .

[2]  Ralph L. Keeney,et al.  Identifying and Structuring Values to Guide Integrated Resource Planning at BC Gas , 1999, Oper. Res..

[3]  Alec Morton,et al.  Decision conferencing for science prioritisation in the UK public sector: a dual case study , 2011, J. Oper. Res. Soc..

[4]  Ahti Salo,et al.  Robust portfolio modeling with incomplete cost information and project interdependencies , 2008, Eur. J. Oper. Res..

[5]  Matthias Ehrgott,et al.  Multiple criteria decision analysis: state of the art surveys , 2005 .

[6]  R. Słowiński,et al.  Molp with an interactive assessment of a piecewise linear utility function , 1987 .

[7]  Kalyanmoy Deb,et al.  Multiobjective optimization , 1997 .

[8]  William J. Tarantino,et al.  Use of Decision Analysis in the Army Base Realignment and Closure (BRAC) 2005 Military Value Analysis , 2006, Decis. Anal..

[9]  S. Zionts,et al.  An Interactive Programming Method for Solving the Multiple Criteria Problem , 1976 .

[10]  Ralph L. Keeney,et al.  Value-Focused Thinking about Strategic Decisions at BC Hydro , 1992 .

[11]  C.A. Bana e Costa,et al.  Software packages for multi-criteria resource allocation , 2008, 2008 IEEE International Engineering Management Conference.

[12]  Ahti Salo,et al.  Participatory development of a strategic product portfolio in a telecommunication company , 2008, Int. J. Technol. Manag..

[13]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[14]  Bernard Roy,et al.  Decision science or decision-aid science? , 1993 .

[15]  Craig W. Kirkwood,et al.  Strategic decision making : multiobjective decision analysis with spreadsheets : instructor's manual , 1996 .

[16]  Lorraine R. Gardiner,et al.  Unified interactive multiple objective programming , 1994 .

[17]  Marc Roubens,et al.  Advances in decision analysis , 1999 .

[18]  T. J. Stewart,et al.  An interactive multiple objective linear programming method based on piecewise-linear additive value functions , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[19]  D. N. Kleinmuntz Advances in Decision Analysis: Resource Allocation Decisions , 2007 .

[20]  Ian M Mitchell,et al.  Bringing Value Focused Thinking to Bear on Equipment Procurement , 2008 .

[21]  Yannis Siskos,et al.  Preference disaggregation: 20 years of MCDA experience , 2001, Eur. J. Oper. Res..

[22]  José Rui Figueira,et al.  Identifying preferred solutions to Multi-Objective Binary Optimisation problems, with an application to the Multi-Objective Knapsack Problem , 2011, J. Glob. Optim..

[23]  P. Slovic The Construction of Preference , 1995 .

[24]  Ahti Salo,et al.  Preference programming for robust portfolio modeling and project selection , 2007, Eur. J. Oper. Res..

[25]  Daniel Vanderpooten,et al.  The interactive approach in MCDA: A technical framework and some basic conceptions , 1989 .

[26]  Theodor J. Stewart,et al.  Use of piecewise linear value functions in interactive multicriteria decision support: a Monte Carlo study , 1993 .

[27]  Pekka Korhonen,et al.  Choice behavior in interactive multiple-criteria decision making , 1990 .

[28]  Ahti Salo,et al.  Combining a Multiattribute Value Function with an Optimization Model: An Application to Dynamic Resource Allocation for Infrastructure Maintenance , 2009, Decis. Anal..

[29]  S. Zionts,et al.  An Interactive Multiple Objective Linear Programming Method for a Class of Underlying Nonlinear Utility Functions , 1983 .

[30]  José Rui Figueira,et al.  A Scatter Search Method for the Bi-Criteria Multi-dimensional {0,1}-Knapsack Problem using Surrogate Relaxation , 2004, J. Math. Model. Algorithms.

[31]  Philippe Vincke,et al.  Description and analysis of some representative interactive multicriteria procedures , 1989 .

[32]  Carlos A. Bana e Costa,et al.  Transparent prioritisation, budgeting and resource allocation with multi-criteria decision analysis and decision conferencing , 2007, Ann. Oper. Res..

[33]  Luis C. Dias,et al.  Resolving inconsistencies among constraints on the parameters of an MCDA model , 2003, Eur. J. Oper. Res..

[34]  Dennis M Buede,et al.  Decision-Analytic Support of the United States Marine Corp's Program Development: A Guide to the Methodology , 1981 .

[35]  L. Phillips A theory of requisite decision models , 1984 .

[36]  J. Siskos Assessing a set of additive utility functions for multicriteria decision-making , 1982 .

[37]  José Rui Figueira,et al.  Building a set of additive value functions representing a reference preorder and intensities of preference: GRIP method , 2009, Eur. J. Oper. Res..

[38]  José Rui Figueira,et al.  Solving the bi-objective multi-dimensional knapsack problem exploiting the concept of core , 2009, Appl. Math. Comput..