Solid state NMR structural studies of the lithiation of nano-silicon:: Effects of charging capacities, host-doping, and thermal treatment

[1]  Jens Leker,et al.  Current research trends and prospects among the various materials and designs used in lithium-based batteries , 2013, Journal of Applied Electrochemistry.

[2]  Martin Winter,et al.  Structural characterization of the lithium silicides Li15Si4, Li13Si4, and Li7Si3 using solid state NMR. , 2012, Physical chemistry chemical physics : PCCP.

[3]  M. Winter,et al.  Structural and dynamic characterization of Li(12)Si(7) and Li(12)Ge(7) using solid state NMR. , 2012, Solid state nuclear magnetic resonance.

[4]  D. Guyomard,et al.  Synthesis of boron-doped Si particles by ball milling and application in Li-ion batteries , 2012 .

[5]  P. Heitjans,et al.  Li NMR spectroscopy on crystalline Li12Si7: experimental evidence for the aromaticity of the planar cyclopentadienyl-analogous Si5(6-) rings. , 2011, Angewandte Chemie.

[6]  V. Shenoy,et al.  The mixing mechanism during lithiation of Si negative electrode in Li-ion batteries: an ab initio molecular dynamics study. , 2011, Nano letters.

[7]  Brandon R. Long,et al.  Dopant Modulated Li Insertion in Si for Battery Anodes: Theory and Experiment , 2011 .

[8]  P. Moreau,et al.  The failure mechanism of nano-sized Si-based negative electrodes for lithium ion batteries , 2011 .

[9]  M. Winter,et al.  NMR investigations on the lithiation and delithiation of nanosilicon-based anodes for Li-ion batteries , 2011 .

[10]  J. Tarascon,et al.  Pair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: understanding the (de)lithiation mechanisms. , 2011, Journal of the American Chemical Society.

[11]  John G. Ekerdt,et al.  Structure and Properties of Li―Si Alloys: A First-Principles Study , 2011 .

[12]  Arumugam Manthiram,et al.  Materials Challenges and Opportunities of Lithium-ion Batteries for Electrical Energy Storage , 2011 .

[13]  Jun Chen,et al.  Lithium transport at silicon thin film: barrier for high-rate capability anode. , 2010, The Journal of chemical physics.

[14]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[15]  Martin Winter,et al.  The Solid Electrolyte Interphase – The Most Important and the Least Understood Solid Electrolyte in Rechargeable Li Batteries , 2009 .

[16]  D. Guyomard,et al.  Silicon Composite Electrode with High Capacity and Long Cycle Life , 2009 .

[17]  Joong-Kee Lee,et al.  Electrochemical characteristics of phosphorus doped silicon and graphite composite for the anode materials of lithium secondary batteries , 2009 .

[18]  Rangeet Bhattacharyya,et al.  Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. , 2009, Journal of the American Chemical Society.

[19]  Martin Winter,et al.  Nano-porous SiO/carbon composite anode for lithium-ion batteries , 2009 .

[20]  D. Tallman,et al.  Studies of Electron Transfer at Aluminum Alloy Surfaces by Scanning Electrochemical Microscopy , 2007, ECS Transactions.

[21]  Jing Li,et al.  An In Situ X-Ray Diffraction Study of the Reaction of Li with Crystalline Si , 2007 .

[22]  Mark N. Obrovac,et al.  Reversible Cycling of Crystalline Silicon Powder , 2007 .

[23]  J. Besenhard,et al.  Synthesis and Characterization of Nanoporous NiSi-Si Composite Anode for Lithium-Ion Batteries , 2007 .

[24]  J. Dahn,et al.  Phase Changes in Electrochemically Lithiated Silicon at Elevated Temperature , 2006 .

[25]  A. Kjekshus,et al.  From monosilane to crystalline silicon. Part III. Characterization of amorphous, hydrogen-containing silicon products , 2005 .

[26]  Mark N. Obrovac,et al.  Structural changes in silicon anodes during lithium insertion/extraction , 2004 .

[27]  N. Dudney,et al.  Electrochemically-driven solid-state amorphization in lithium–metal anodes , 2003 .

[28]  G. Hoatson,et al.  Modelling one‐ and two‐dimensional solid‐state NMR spectra , 2002 .

[29]  J. Besenhard,et al.  Negative electrodes in rechargeable lithium ion batteries — Influence of graphite surface modification on the formation of the solid electrolyte interphase , 2000 .

[30]  H. Sugisawa,et al.  207Pb chemical shift thermometer at high temperature for magic angle spinning experiments. , 1999, Solid state nuclear magnetic resonance.

[31]  Z. Yang,et al.  Solid state 29Si magic angle spinning NMR: investigation of bond formation and crystallinity of silicon and graphite powder mixtures during high energy milling , 1998 .

[32]  Martin Winter,et al.  Insertion reactions in advanced electrochemical energy storage , 1998 .

[33]  D. P. Burum,et al.  Temperature Dependence of 207 Pb MAS Spectra of Solid Lead Nitrate. An Accurate, Sensitive Thermometer for Variable-Temperature MAS , 1995 .

[34]  Shao,et al.  Magic-angle spinning 29Si NMR study of short-range order in a-Si. , 1990, Physical review. B, Condensed matter.

[35]  J. Vaughey,et al.  Formation of Silicon Local Environments upon Annealing for Silicon Anodes: A 29Si Solid State NMR Study , 2013 .

[36]  Hannah M. Dahn,et al.  Activation Energies of Crystallization Events in Electrochemically Lithiated Silicon , 2011 .

[37]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[38]  Chunsheng Wang,et al.  Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells , 2007 .