Turán's Theorem for random graphs

For a graph $G$, denote by $t_r(G)$ (resp. $b_r(G)$) the maximum size of a $K_r$-free (resp. $(r-1)$-partite) subgraph of $G$. Of course $t_r(G) \geq b_r(G)$ for any $G$, and Tur\'an's Theorem says that equality holds for complete graphs. With $G_{n,p}$ the usual ("binomial" or "Erd\H{o}s-R\'enyi") random graph, we show: For each fixed r there is a C such that if \[ p=p(n) > Cn^{-\tfrac{2}{r+1}}\log^{\tfrac{2}{(r+1)(r-2)}}n, \] then $\Pr(t_r(G_{n,p})=b_r(G_{n,p}))\rightarrow 1$ as $n\rightarrow\infty$. This is best possible (apart from the value of $C$) and settles a question first considered by Babai, Simonovits and Spencer about 25 years ago.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  V. Vu On the Concentration of Multi-Variate Polynomials with Small Expectation , 2000 .

[3]  V. Rödl,et al.  Threshold functions for Ramsey properties , 1995 .

[4]  Vojtech Rödl,et al.  Random Graphs with Monochromatic Triangles in Every Edge Coloring , 1994, Random Struct. Algorithms.

[5]  T. Lu ON K4-FREE SUBGRAPHS OF RANDOM GRAPHS , 1997 .

[6]  Oliver Riordan,et al.  The Janson inequalities for general up‐sets , 2012, Random Struct. Algorithms.

[7]  C. McDiarmid,et al.  The Solution of a Timetabling Problem , 1972 .

[8]  M. Schacht Extremal results for random discrete structures , 2016, 1603.00894.

[9]  Van H. Vu,et al.  Concentration of Multivariate Polynomials and Its Applications , 2000, Comb..

[10]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[11]  T. E. Harris A lower bound for the critical probability in a certain percolation process , 1960, Mathematical Proceedings of the Cambridge Philosophical Society.

[12]  Van H. Vu,et al.  Concentration of non‐Lipschitz functions and applications , 2002, Random Struct. Algorithms.

[13]  Svante Janson,et al.  The infamous upper tail , 2002, Random Struct. Algorithms.

[14]  Vojtech Rödl,et al.  Large triangle-free subgraphs in graphs withoutK4 , 1986, Graphs Comb..

[15]  B. Bollobás The evolution of random graphs , 1984 .

[16]  V. Rödl,et al.  Arithmetic progressions of length three in subsets of a random set , 1996 .

[17]  Sourav Chatterjee,et al.  The missing log in large deviations for triangle counts , 2010, Random Struct. Algorithms.

[18]  W. T. Gowers,et al.  Combinatorial theorems in sparse random sets , 2010, 1011.4310.

[19]  Jeff Kahn,et al.  Upper tails for triangles , 2010, Random Struct. Algorithms.

[20]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[21]  Svante Janson,et al.  Poisson Approximation for Large Deviations , 1990, Random Struct. Algorithms.

[22]  Miklós Simonovits,et al.  Extremal subgraphs of random graphs , 1990, J. Graph Theory.

[23]  Mathias Schacht,et al.  Extremal Results in Random Graphs , 2013, 1302.2248.

[24]  Svante Janson,et al.  Random graphs , 2000, Wiley-Interscience series in discrete mathematics and optimization.

[25]  Wojciech Samotij Stability results for random discrete structures , 2014, Random Struct. Algorithms.

[26]  P. Erdos,et al.  SOME RECENT RESULTS ON EXTREMAL PROBLEMS IN GRAPH THEORY (Results) , 2002 .

[27]  J. Balogh,et al.  Independent sets in hypergraphs , 2012, 1204.6530.

[28]  William W. L. Chen On irregularities of distribution. , 1980 .

[29]  Stefanie Gerke,et al.  K5-free subgraphs of random graphs , 2004, Random Struct. Algorithms.

[30]  N. Alon,et al.  The Probabilistic Method , 1992, SODA.