European mushroom assemblages are darker in cold climates

[1]  K. Delhey,et al.  A review of Gloger's rule, an ecogeographical rule of colour: definitions, interpretations and evidence , 2019, Biological reviews of the Cambridge Philosophical Society.

[2]  D. Hibbett,et al.  Evolutionary dynamics of host specialization in wood-decay fungi , 2018, BMC Evolutionary Biology.

[3]  Ebuka S. Arinze,et al.  Impact of Yeast Pigmentation on Heat Capture and Latitudinal Distribution , 2018, Current Biology.

[4]  Stefan Pinkert,et al.  Thermal Biology: Melanin-Based Energy Harvesting across the Tree of Life , 2018, Current Biology.

[5]  J. Müller,et al.  Independent effects of host and environment on the diversity of wood‐inhabiting fungi , 2018 .

[6]  T. Kuyper,et al.  Continental‐scale macrofungal assemblage patterns correlate with climate, soil carbon and nitrogen deposition , 2018, Journal of Biogeography.

[7]  M. Brändle,et al.  The dark side of Lepidoptera: Colour lightness of geometrid moths decreases with increasing latitude , 2018 .

[8]  J. Heilmann‐Clausen,et al.  Fungal spore diversity reflects substrate-specific deposition challenges , 2018, Scientific Reports.

[9]  L. Nagy,et al.  Complex multicellularity in fungi: evolutionary convergence, single origin, or both? , 2018, Biological reviews of the Cambridge Philosophical Society.

[10]  Per B. Brockhoff,et al.  lmerTest Package: Tests in Linear Mixed Effects Models , 2017 .

[11]  R. Fuller,et al.  Using Human Vision to Detect Variation in Avian Coloration: How Bad Is It? , 2017, The American Naturalist.

[12]  Stefan Pinkert,et al.  Colour lightness of dragonfly assemblages across North America and Europe , 2017 .

[13]  J. Slot,et al.  Six Key Traits of Fungi: Their Evolutionary Origins and Genetic Bases , 2017, Microbiology spectrum.

[14]  Hannah M. Rowland,et al.  The biology of color , 2017, Science.

[15]  J. Bonet,et al.  Mushroom biomass and diversity are driven by different spatio-temporal scales along Mediterranean elevation gradients , 2017, Scientific Reports.

[16]  Lynne Boddy,et al.  Big data integration : Pan-European fungal species observations' assembly for addressing contemporary questions in ecology and global change biology , 2017 .

[17]  A. Casadevall,et al.  Functions of fungal melanin beyond virulence. , 2017, Fungal biology reviews.

[18]  S. Chown,et al.  Ant assemblages have darker and larger members in cold environments , 2016 .

[19]  Qihao Shi,et al.  The Environmental Plasticity of Diverse Body Color Caused by Extremely Long Photoperiods and High Temperature in Saccharosydne procerus (Homoptera: Delphacidae) , 2016, Front. Physiol..

[20]  Olga Chernomor,et al.  Terrace Aware Data Structure for Phylogenomic Inference from Supermatrices , 2016, Systematic biology.

[21]  F. Rimet,et al.  phylosignal: an R package to measure, test, and explore the phylogenetic signal , 2016, Ecology and evolution.

[22]  J. Müller,et al.  Mean reproductive traits of fungal assemblages are correlated with resource availability , 2016, Ecology and evolution.

[23]  R. Brandl,et al.  Spore wall traits of ectomycorrhizal and saprotrophic agarics may mirror their distinct lifestyles , 2015 .

[24]  R. Brandl,et al.  Ectomycorrhizal fungi have larger fruit bodies than saprotrophic fungi , 2015 .

[25]  J. Diez,et al.  Drought-induced changes in the phenology, productivity and diversity of Spanish fungi , 2015 .

[26]  Cassius Vinicius Stevani,et al.  Circadian Control Sheds Light on Fungal Bioluminescence , 2015, Current Biology.

[27]  Bernard Henrissat,et al.  Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists , 2015, Nature Genetics.

[28]  R. Henrik Nilsson,et al.  Global diversity and geography of soil fungi , 2014, Science.

[29]  H. Pretzsch,et al.  Forest stand growth dynamics in Central Europe have accelerated since 1870 , 2014, Nature Communications.

[30]  Lynne Boddy,et al.  Climate variation effects on fungal fruiting , 2014 .

[31]  M. Cadotte,et al.  Near‐to‐nature logging influences fungal community assembly processes in a temperate forest , 2014 .

[32]  S. Madronich,et al.  Solar Ultraviolet Radiation in a Changing Climate , 2014 .

[33]  Stefan Brunzel,et al.  Global warming favours light-coloured insects in Europe , 2014, Nature Communications.

[34]  C. Ané,et al.  A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. , 2014, Systematic biology.

[35]  H. Kauserud,et al.  Unraveling environmental drivers of a recent increase in Swiss fungi fruiting , 2013, Global change biology.

[36]  Torsten Hothorn,et al.  Insects Overshoot the Expected Upslope Shift Caused by Climate Warming , 2013, PloS one.

[37]  M. Donoghue,et al.  How colorful are fruits? Limited color diversity in fleshy fruits on local and global scales. , 2013, The New phytologist.

[38]  T. Jombart,et al.  How to measure and test phylogenetic signal , 2012 .

[39]  Albee Y. Ling,et al.  The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes , 2012, Science.

[40]  J. Gurevitch,et al.  C allocation to the fungus is not a cost to the plant in ectomycorrhizae , 2012 .

[41]  A. Casadevall,et al.  Synthesis and assembly of fungal melanin , 2012, Applied Microbiology and Biotechnology.

[42]  J. Mann Fortschritte der Chemie organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products , 2011 .

[43]  R. Ohlemüller,et al.  Rapid Range Shifts of Species Associated with High Levels of Climate Warming , 2011, Science.

[44]  R. McKenzie,et al.  UV impacts avoided by the Montreal Protocol , 2011, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[45]  C. Körner,et al.  Topographically controlled thermal‐habitat differentiation buffers alpine plant diversity against climate warming , 2011 .

[46]  S. Wood Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models , 2011 .

[47]  E. G. LEIGH Jr The evolution of mutualism , 2010 .

[48]  J. Müller,et al.  Effects of resource availability and climate on the diversity of wood‐decaying fungi , 2010 .

[49]  N. Stenseth,et al.  Climate change and spring-fruiting fungi , 2010, Proceedings of the Royal Society B: Biological Sciences.

[50]  T. May,et al.  Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages , 2010, Mycorrhiza.

[51]  R. Cardé,et al.  Encyclopedia of Insects , 2009 .

[52]  P. Strobl,et al.  Pan-European Forest/Non-Forest Mapping with Landsat ETM+ and CORINE Land Cover 2000 Data , 2009 .

[53]  M. Donoghue,et al.  Mega-phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches , 2009, BMC Evolutionary Biology.

[54]  P. Jones,et al.  A European daily high-resolution gridded data set of surface temperature and precipitation for 1950-2006 , 2008 .

[55]  J. H. Wyk,et al.  Thermal melanism in ectotherms , 2007 .

[56]  J. L. Parra,et al.  Very high resolution interpolated climate surfaces for global land areas , 2005 .

[57]  Roderick S. Bain,et al.  Explaining Dioscorides' “Double Difference”: Why Are Some Mushrooms Poisonous, and Do They Signal Their Unprofitability? , 2005, The American Naturalist.

[58]  E. M. van Rikxoort,et al.  Evaluation of color representation for texture analysis , 2004 .

[59]  Malcolm K. Hughes,et al.  corrigendum: Global-scale temperature patterns and climate forcing over the past six centuries , 2004 .

[60]  Korbinian Strimmer,et al.  APE: Analyses of Phylogenetics and Evolution in R language , 2004, Bioinform..

[61]  M. Graham CONFRONTING MULTICOLLINEARITY IN ECOLOGICAL MULTIPLE REGRESSION , 2003 .

[62]  K. Wilson,et al.  Melanism and disease resistance in insects , 2001 .

[63]  C. Robinson Cold adaptation in Arctic and Antarctic fungi , 2001 .

[64]  N. Gotelli Null model analysis of species co-occurrence patterns , 2000 .

[65]  Malcolm K. Hughes,et al.  Global-scale temperature patterns and climate forcing over the past six centuries , 1998, Nature.

[66]  A. Grafen The phylogenetic regression. , 1989, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[67]  J. Felsenstein Phylogenies and the Comparative Method , 1985, The American Naturalist.

[68]  D. Unwin,et al.  Field analyses of insect heat budgets: Reflectance, size and heating rates , 1981, Oecologia.

[69]  D. Savile,et al.  Arctic Adaptations in Plants , 1972 .

[70]  E. Rapoport GLOGER'S RULE AND PIGMENTATION OF COLLEMBOLA , 1969, Evolution; international journal of organic evolution.

[71]  R. Genders Mushroom Growing For Everyone , 1969 .

[72]  C M BOGERT,et al.  THERMOREGULATION IN REPTILES, A FACTOR IN EVOLUTION , 1949, Evolution; international journal of organic evolution.

[73]  H. Kalmus Physiology and Ecology of Cuticle Colour in Insects , 1941, Nature.

[74]  T. Caro,et al.  Wallace on Coloration: Contemporary Perspective and Unresolved Insights. , 2017, Trends in ecology & evolution.

[75]  T. Kuyper,et al.  Trait‐dependent distributional shifts in fruiting of common British fungi , 2018 .

[76]  Damaris Zurell,et al.  Collinearity: a review of methods to deal with it and a simulation study evaluating their performance , 2013 .

[77]  A. Rinaldi,et al.  Ectomycorrhizal fungal diversity: seperating the wheat from the chaff , 2008 .

[78]  Russell D. Wolfinger,et al.  The analysis of repeated measurements: a comparison of mixed-model satterthwaite f tests and a nonpooled adjusted degrees of freedom multivariate test , 1999 .

[79]  M. Gill,et al.  Pigments of fungi (Macromycetes). , 1987, Fortschritte der Chemie organischer Naturstoffe = Progress in the chemistry of organic natural products. Progres dans la chimie des substances organiques naturelles.

[80]  H. Kalmus Physiology and Ecology of Cuticle Colour in Insects , 1941, Nature.