Hierarchical supply chain planning using artificial neural networks to anticipate base-level outcomes

Abstract.Most Advanced Planning Systems decompose the task of production planning according to the planning horizon in two levels, mid-term and short-term planning. The mid-term planning level sets the targets for the short-term level. In response, the short-term planning level gives feedback to the mid-term level. Moreover, due to detailed knowledge, the short-term planning level should provide relevant input to the mid-term planning run. To compute accurate targets for the short-term planning level the mid-term planning should anticipate its major behaviour. In this article we present an artificial neural network based anticipation of a short-term planning level for a single-stage, multi-product flow line production environment.

[1]  Shengxiang Yang,et al.  Constraint satisfaction adaptive neural network and heuristics combined approaches for generalized job-shop scheduling , 2000, IEEE Trans. Neural Networks Learn. Syst..

[2]  R. Palmer,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[3]  Ling Li,et al.  Using MLP networks to design a production scheduling system , 2003, Comput. Oper. Res..

[4]  G. Nemhauser,et al.  Integer Programming , 2020 .

[5]  S. H. Huang,et al.  Applications of neural networks in manufacturing: a state-of-the-art survey , 1995 .

[6]  Gabriel R. Bitran,et al.  Hierarchical planning systems — a production application , 1979 .

[7]  Christian Lebiere,et al.  The Cascade-Correlation Learning Architecture , 1989, NIPS.

[8]  J. Nazuno Haykin, Simon. Neural networks: A comprehensive foundation, Prentice Hall, Inc. Segunda Edición, 1999 , 2000 .

[9]  Herbert Meyr Simultane Losgrößen- und Reihenfolgeplanung für kontinuierliche Produktionslinien , 1999 .

[10]  Mitsuo Gen,et al.  Neural network approach for multicriteria solid transportation problem , 1997 .

[11]  B. Fleischmann The discrete lot-sizing and scheduling problem , 1990 .

[12]  Lotfi K. Gaafar,et al.  A neural network model for solving the lot-sizing problem , 2000 .

[13]  Jürgen Faißt Hierarchische Planung unter Einsatz Neuronaler Netze , 1993 .

[14]  Hans Corsten,et al.  Unterstützungspotential Künstlicher Neuronaler Netze für die Produktionsplanung und -steuerung , 1996 .

[15]  A. S. Jain,et al.  Job-shop scheduling using neural networks , 1998 .

[16]  H. Jönsson,et al.  Aggregation and Disaggregation in Hierarchical Production Planning , 1984 .

[17]  Emile H. L. Aarts,et al.  A novel decomposition approach for on-line lot-sizing , 2000, Eur. J. Oper. Res..

[18]  Awi Federgruen,et al.  Detection of minimal forecast horizons in dynamic programs with multiple indicators of the future , 1996 .

[19]  Marcus R. Frean,et al.  Small nets and short paths : optimising neural computation , 1990 .

[20]  Christoph A. Schneeweiss,et al.  Hierarchies in Distributed Decision Making , 1999 .

[21]  K. Kistner Koordinationsmechanismen in der hierarchischen Planung , 1993 .

[22]  Arnoldo C. Hax,et al.  Hierarchical integration of production planning and scheduling , 1973 .

[23]  Marimuthu Palaniswami,et al.  Traditional heuristic versus Hopfield neural network approaches to a car sequencing problem , 1996 .

[24]  David F. Pyke,et al.  Inventory management and production planning and scheduling , 1998 .

[25]  Sven Axsäter,et al.  Aggregation of Product Data for Hierarchical Production Planning , 1981, Oper. Res..

[26]  A. Drexl,et al.  Proportional lotsizing and scheduling , 1995 .

[27]  Herbert Meyr,et al.  Die Supply Chain Planning Matrix , 2000 .

[28]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[29]  Subramaniam Balakrishnan,et al.  Sequencing jobs on a single machine: A neural network approach , 2000, Eur. J. Oper. Res..

[30]  Hartmut Stadtler,et al.  Hierarchische Produktionsplanung bei losweiser Fertigung , 1988 .

[31]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[32]  Ihsan Sabuncuoglu,et al.  A neural network model for scheduling problems , 1996 .

[33]  Marcus Frean,et al.  The Upstart Algorithm: A Method for Constructing and Training Feedforward Neural Networks , 1990, Neural Computation.