1-D Schrödinger operators with local point interactions on a discrete set

[1]  H. Neidhardt,et al.  On the unitary equivalence of absolutely continuous parts of self-adjoint extensions , 2009, 0907.0650.

[2]  S. Hassi,et al.  Boundary relations and their Weyl families , 2006 .

[3]  V. Geyler,et al.  SPECTRA OF SELF-ADJOINT EXTENSIONS AND APPLICATIONS TO SOLVABLE SCHRÖDINGER OPERATORS , 2006, math-ph/0611088.

[4]  M. Sokolov Representation Results for Operators Generated by Quasi-Differential Multi-Interval System in a Hilbert Direct Sum Space , 2006 .

[5]  S. Albeverio,et al.  A Schrödinger operator with a δ′‐interaction on a Cantor set and Krein–Feller operators , 2006 .

[6]  H. Holden,et al.  Solvable Models in Quantum Mechanics: Second Edition , 2004 .

[7]  M. Sokolov ON SOME SPECTRAL PROPERTIES OF OPERATORS GENERATED BY QUASI-DIFFERENTIAL MULTI-INTERVAL SYSTEMS , 2003 .

[8]  A. Shkalikov,et al.  Sturm-Liouville operators with distributional potentials , 2003, math/0301077.

[9]  A. G. Kostyuchenko,et al.  Complete Indefiniteness Tests for Jacobi Matrices with Matrix Entries , 2001 .

[10]  R. Hryniv,et al.  Schrödinger operators with singular Gordon potentials , 2001, math/0109130.

[11]  Sergio Albeverio,et al.  Singular perturbations of differential operators : solvable Schrödinger type operators , 2000 .

[12]  A. Shkalikov,et al.  Sturm-liouville operators with singular potentials , 1999 .

[13]  G. Teschl Jacobi Operators and Completely Integrable Nonlinear Lattices , 1999 .

[14]  V. Koshmanenko Singular Quadratic Forms in Perturbation Theory , 1999 .

[15]  V. Mikhailets The structure of the continuous spectrum of a one-dimensional Schrödinger operator with point interactions , 1996 .

[16]  G. Stolz,et al.  Spectral theory of one-dimensional Schrödinger operators with point interactions , 1994 .

[17]  V. Mikhailets Point interactions on the line , 1993 .

[18]  W. N. Everitt,et al.  Differential Operators Generated by a Countable Number of Quasi-Differential Expressions on the Real Line , 1992 .

[19]  S. Molchanov,et al.  Spectral theory of one-dimensional Schrödinger operators with strongly fluctuating potentials , 1991 .

[20]  V. Gorbachuk,et al.  Boundary Value Problems for Operator Differential Equations , 1990 .

[21]  H. Holden,et al.  Solvable models in quantum mechanics , 1990 .

[22]  A. Kochubei One-dimensional point interactions , 1989 .

[23]  H. Holden,et al.  A new class of solvable models in quantum mechanics describing point interactions on the line , 1987 .

[24]  P. Seba Some remarks on the δ′-interaction in one dimension , 1986 .

[25]  F. Gesztesy,et al.  An exactly solvable periodic Schrodinger operator , 1985 .

[26]  R. S. Ismagilov Spectrum of the Sturm-Liouville equation with an oscillating potential , 1985 .

[27]  J. Brasche Perturbation of Schrödinger Hamiltonians by measures—Self‐adjointness and lower semiboundedness , 1985 .

[28]  A. Grossmann,et al.  A class of explicitly soluble, local, many‐center Hamiltonians for one‐particle quantum mechanics in two and three dimensions. I , 1980 .

[29]  A. Grossmann,et al.  The one particle theory of periodic point interactions , 1980 .

[30]  A. Kochubei Symmetric operators and nonclassical spectral problems , 1979 .

[31]  S. Lee Operators generated by countably many differential operators , 1978 .

[32]  G. Langer,et al.  Defective subspaces and generalized resolvents of an Hermitian operator in the space Πϰ , 1971 .

[33]  P. Phariseau The energy spectrum of an amorphous substance , 1960 .

[34]  W. Penney,et al.  Quantum Mechanics of Electrons in Crystal Lattices , 1931 .

[35]  S. Hassi,et al.  Oper. Theory Adv. Appl. , 2006 .

[36]  L. Nizhnik A Schrödinger Operator with $$\delta \prime $$ -Interaction , 2003 .

[37]  R. Szwarc Absolute Continuity of Spectral Measure for Certain Unbounded Jacobi Matrices , 2002 .

[38]  S. Naboko,et al.  Multithreshold Spectral Phase Transitions for a Class of Jacobi Matrices , 2001 .

[39]  A. G. Kostyuchenko,et al.  Generalized Jacobi matrices and deficiency numbers of ordinary differential operators with polynomial coefficients , 1999 .

[40]  V. Derkach,et al.  The extension theory of Hermitian operators and the moment problem , 1995 .

[41]  J. Weidmann,et al.  One-dimensional Schrödinger operators with local point interactions. , 1995 .

[42]  V. Mikhailets A discreteness criterion for the spectrum of a one-dimensional Schrödinger operator withδ-interactions , 1994 .

[43]  V. Derkach,et al.  Generalized resolvents and the boundary value problems for Hermitian operators with gaps , 1991 .

[44]  Nariyuki Minami Schrödinger operator with potential which is the derivative of a temporally homogeneous Lévy process , 1988 .

[45]  A. Dijksma,et al.  SYMMETRIC AND SELFADJOINT RELATIONS IN KREIN SPACES .2. , 1987 .

[46]  F. Gesztesy,et al.  One-dimensional Schrödinger operators with interactions singular on a discrete set. , 1985 .

[47]  I. S. Kats SPECTRAL FUNCTIONS OF A STRING , 1983 .

[48]  M. Kreĭn,et al.  Defect subspaces and generalized resolvents of an Hermitian operator in the space Πϰ , 1971 .

[49]  R. Bolstein,et al.  Expansions in eigenfunctions of selfadjoint operators , 1968 .

[50]  Tosio Kato Perturbation theory for linear operators , 1966 .

[51]  T. Chihara CHAIN SEQUENCES AND ORTHOGONAL POLYNOMIALS , 1962 .

[52]  I. M. Glazman,et al.  Theory of linear operators in Hilbert space , 1961 .

[53]  L. Sirovich,et al.  Partial Differential Equations , 1941 .

[54]  A. Kostenko,et al.  Institute for Mathematical Physics 1–d Schrödinger Operators with Local Interactions on a Discrete Set 1–d Schrödinger Operators with Local Interactions on a Discrete Set , 2022 .