Optimizing Memory Constrained Environments in Monte Carlo Nuclear Reactor Simulations

Monte Carlo neutron transport codes are a growing subject of research in nuclear reactor analysis. For robust reactor analysis, large scale neutron transport simulations require computation of reaction rates for tens of billions of particles involving several hundred isotopes. When employing physical-space domain decomposition, minimizing memory consumption while safely and efficiently exchanging massive amounts of data is a significant challenge. To address this problem, we implement and test several “memory-aware”, in-place, sparse, all-to-all MPI communication implementations. The algorithms are developed and tested within the open source MADRE (Memory-Aware Data Redistribution) project, which gives application programmers a simple API and set of tools and algorithms for carrying out memory-transparent in-place communication. We explore memory and communication efficiency tradeoffs for a range of in-place algorithms using a simple Monte Carlo communication kernel intended to mimic the behavior of our full Monte Carlo neutronics code.

[1]  Paul K. Romano,et al.  Towards Scalable Parallelism in Monte Carlo Particle Transport Codes Using Remote Memory Access , 2011 .

[2]  William R. Martin,et al.  A proposal for a benchmark to monitor the performance of detailed Monte Carlo calculation of power densities in a full size reactor core , 2009 .

[3]  Philip Heidelberger,et al.  The deep computing messaging framework: generalized scalable message passing on the blue gene/P supercomputer , 2008, ICS '08.

[4]  Andrew R. Siegel,et al.  Madre: the Memory-Aware Data Redistribution Engine , 2008, Int. J. High Perform. Comput. Appl..

[5]  Jack Dongarra,et al.  Recent Advances in the Message Passing Interface - 17th European MPI Users' Group Meeting, EuroMPI 2010, Stuttgart, Germany, September 12-15, 2010. Proceedings , 2010, EuroMPI.

[6]  Andrew R. Siegel,et al.  A Memory-Efficient Data Redistribution Algorithm , 2009, PVM/MPI.

[7]  Andrew R. Siegel,et al.  Analysis of communication costs for domain decomposed Monte Carlo methods in nuclear reactor analysis , 2012, J. Comput. Phys..

[8]  Jonghwa Chang,et al.  SOME OUTSTANDING PROBLEMS IN NEUTRON TRANSPORT COMPUTATION , 2009 .

[9]  Bruce Hendrickson,et al.  Interprocessor communication with limited memory , 2004, IEEE Transactions on Parallel and Distributed Systems.

[10]  Gudula Rünger,et al.  Fine-Grained Data Distribution Operations for Particle Codes , 2009, PVM/MPI.

[11]  Gudula Rünger,et al.  An In-Place Algorithm for Irregular All-to-All Communication with Limited Memory , 2010, EuroMPI.

[12]  Jack Dongarra,et al.  Recent Advances in Parallel Virtual Machine and Message Passing Interface, 15th European PVM/MPI Users' Group Meeting, Dublin, Ireland, September 7-10, 2008. Proceedings , 2008, PVM/MPI.

[13]  Benoit Forget,et al.  The OpenMC Monte Carlo particle transport code , 2012 .