Implicit user modeling for personalized search

Information retrieval systems (e.g., web search engines) are critical for overcoming information overload. A major deficiency of existing retrieval systems is that they generally lack user modeling and are not adaptive to individual users, resulting in inherently non-optimal retrieval performance. For example, a tourist and a programmer may use the same word "java" to search for different information, but the current search systems would return the same results. In this paper, we study how to infer a user's interest from the user's search context and use the inferred implicit user model for personalized search. We present a decision theoretic framework and develop techniques for implicit user modeling in information retrieval. We develop an intelligent client-side web search agent (UCAIR) that can perform eager implicit feedback, e.g., query expansion based on previous queries and immediate result reranking based on clickthrough information. Experiments on web search show that our search agent can improve search accuracy over the popular Google search engine.

[1]  Thorsten Joachims,et al.  Optimizing search engines using clickthrough data , 2002, KDD.

[2]  Charles L. A. Clarke,et al.  Overview of the TREC 2004 Terabyte Track , 2004, TREC.

[3]  Eric Horvitz,et al.  Patterns of search: analyzing and modeling Web query refinement , 1999 .

[4]  Ryen W. White,et al.  A Simulated Study of Implicit Feedback Models , 2004, ECIR.

[5]  Gerard Salton,et al.  Improving Retrieval Performance by Relevance Feedback , 1997 .

[6]  Eugene Volokh,et al.  Personalization and privacy , 2000, CACM.

[7]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[8]  Masatoshi Yoshikawa,et al.  Adaptive web search based on user profile constructed without any effort from users , 2004, WWW '04.

[9]  Ophir Frieder,et al.  Hourly analysis of a very large topically categorized web query log , 2004, SIGIR '04.

[10]  John D. Lafferty,et al.  Model-based feedback in the language modeling approach to information retrieval , 2001, CIKM '01.

[11]  Jennifer Widom,et al.  Scaling personalized web search , 2003, WWW '03.

[12]  Gerard Salton,et al.  The SMART Retrieval System—Experiments in Automatic Document Processing , 1971 .

[13]  Chris Buckley,et al.  Improving automatic query expansion , 1998, SIGIR '98.

[14]  Dale Schuurmans,et al.  Dynamic Web log session identification with statistical language models , 2004, J. Assoc. Inf. Sci. Technol..

[15]  W. Bruce Croft,et al.  Query expansion using local and global document analysis , 1996, SIGIR '96.

[16]  Jaime Teevan,et al.  Implicit feedback for inferring user preference: a bibliography , 2003, SIGF.

[17]  David Hawking,et al.  Overview of the TREC 2003 Web Track , 2003, TREC.

[18]  Mark Claypool,et al.  Implicit interest indicators , 2001, IUI '01.

[19]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[20]  Geoffrey Nunberg As Google Goes, So Goes the Nation , 2003 .

[21]  W. Bruce Croft,et al.  Relevance-Based Language Models , 2001, SIGIR '01.

[22]  S. Robertson The probability ranking principle in IR , 1997 .

[23]  ChengXiang Zhai,et al.  Exploiting query history for document ranking in interactive information retrieval , 2003, SIGIR '03.

[24]  Gerard Salton,et al.  Improving retrieval performance by relevance feedback , 1997, J. Am. Soc. Inf. Sci..

[25]  Xuehua Shen,et al.  Context-sensitive information retrieval using implicit feedback , 2005, SIGIR '05.

[26]  Donna K. Harman,et al.  Results and Challenges in Web Search Evaluation , 1999, Comput. Networks.

[27]  W. Bruce Croft,et al.  Relevance Feedback and Personalization: A Language Modeling Perspective , 2001, DELOS.