Dynamics of a transcritical coaxial flame under a high-frequency transverse acoustic forcing: Influence of the modulation frequency on the flame response

Abstract The present investigation is motivated by the problem of high-frequency instabilities in liquid rocket engines. The objective is to gain detailed information on the dynamical response of a transcritical coaxial jet flame submitted to transverse acoustic modulations. Large-eddy simulations (LES) are carried out to examine the effects of the modulation frequency on the flame dynamics when the flame lies in the vicinity of a transverse velocity anti-node, corresponding to a pressure node. It is found that the flame configuration and dynamics notably change with the modulation frequency and that the Strouhal number based on the dense core characteristics essentially determines the response of the system. In the case of a frequency close to the natural frequency of the oxygen jet ( St = 0.8 ), the flame motion may be assimilated to that of a flag flapping in the wind. When the flame is modulated at a higher frequency ( St = 3.2 ), it features a corrugated surface extending in the axial direction and executing a bulk motion in the transverse direction with no large scale deformation. For both frequencies, the flame is shortened, flattened in the spanwise direction and periodically displaced in the transverse direction following the acoustic field. These simulations are used in a second step to determine the unsteady rate of heat release and the Rayleigh term arising in the acoustic energy balance, giving access to the corresponding source of acoustic energy and to a possible driving mechanism of acoustic instabilities.

[1]  Sébastien Candel,et al.  High-Frequency Transverse Acoustic Coupling in a Multiple-Injector Cryogenic Combustor , 2006 .

[2]  Vigor Yang,et al.  Liquid rocket engine combustion instability , 1995 .

[3]  Olivier Colin,et al.  Development of High-Order Taylor-Galerkin Schemes for LES , 2000 .

[4]  V. Giovangigli,et al.  Detailed modeling of planar transcritical H2–O2–N2 flames , 2011 .

[5]  Lionel Matuszewski Modélisation et simulation numérique des phénomènes de combustion en régime supercritique , 2011 .

[6]  Sébastien Candel,et al.  Large-Eddy Simulation of oxygen/methane flames under transcritical conditions , 2011 .

[7]  Josette Bellan,et al.  THEORY, MODELING AND ANALYSIS OF TURBULENT SUPERCRITICAL MIXING , 2006 .

[8]  Christophe Dumouchel,et al.  Behaviour of an air-assisted jet submitted to a transverse high-frequency acoustic field , 2009, Journal of Fluid Mechanics.

[9]  Sébastien Candel,et al.  A method for the transverse modulation of reactive flows with application to combustion instability , 2005 .

[10]  Douglas G Talley,et al.  Visual characteristics and initial growth rates of round cryogenic jets at subcritical and supercritical pressures , 2002 .

[11]  Pavel P. Popov,et al.  Two-Dimensional Model for Liquid-Rocket Transverse Combustion Instability , 2013 .

[12]  Anthony Ruiz,et al.  Large-Eddy Simulation of Supercritical-Pressure Round Jets , 2010 .

[13]  Luca Cortelezzi,et al.  On the formation of the counter-rotating vortex pair in transverse jets , 1998, Journal of Fluid Mechanics.

[14]  Lev Davidovich Landau,et al.  Mécanique des fluides , 1989 .

[15]  D. T. Harrje Liquid propellant rocket combustion instability , 1972 .

[16]  W. Mayer,et al.  Atomization and Breakup of Cryogenic Propellants Under High-Pressure Subcritical and Supercritical Conditions , 1998 .

[17]  T. Poinsot Boundary conditions for direct simulations of compressible viscous flows , 1992 .

[18]  Vigor Yang,et al.  Near-field flow and flame dynamics of LOX/methane shear-coaxial injector under supercritical conditions , 2007 .

[19]  Vigor Yang,et al.  Liquid-Propellant Rocket Engine Injector Dynamics , 1998 .

[20]  S. Yoshida,et al.  Intense Tangential Pressure Oscillations Inside a Cylindrical Chamber , 2011 .

[21]  Nicolas Gourdain,et al.  High performance parallel computing of flows in complex geometries: I. Methods , 2009 .

[22]  Corin Segal,et al.  Subcritical to supercritical mixing , 2008 .

[23]  Edge Diffusion Flame Stabilization Behind a Step over a Liquid Reactant , 2003 .

[24]  Thierry Poinsot,et al.  Numerical methods for unsteady compressible multi-component reacting flows on fixed and moving grids , 2005 .

[25]  B. Chehroudi,et al.  Measurements in an Acoustically Driven Coaxial Jet under Supercritical Conditions , 2005 .

[26]  Vigor Yang,et al.  Modeling of supercritical vaporization, mixing, and combustion processes in liquid-fueled propulsion systems , 2000 .

[27]  Pavel P. Popov,et al.  Stochastic modelling of transverse wave instability in a liquid-propellant rocket engine , 2014, Journal of Fluid Mechanics.

[28]  Sébastien Candel,et al.  Planar laser-induced fluorescence of OH in high-pressure cryogenic LOx/GH2 jet flames , 2006 .

[29]  Laurent Selle,et al.  Modelling of subgrid-scale phenomena in supercritical transitional mixing layers: an a priori study , 2007, Journal of Fluid Mechanics.

[30]  Corin Segal,et al.  Experimental Study of Fluid Jet Mixing at Supercritical Conditions , 2010 .

[31]  Paul Kuentzmann,et al.  Unsteady Motions in Combustion Chambers for Propulsion Systems , 2006 .

[32]  Sébastien Candel,et al.  Combustion dynamics and control: Progress and challenges , 2002 .

[33]  Michael Oschwald,et al.  INJECTION OF FLUIDS INTO SUPERCRITICAL ENVIRONMENTS , 2006 .

[34]  Joseph C. Oefelein,et al.  MIXING AND COMBUSTION OF CRYOGENIC OXYGEN-HYDROGEN SHEAR-COAXIAL JET FLAMES AT SUPERCRITICAL PRESSURE , 2006 .

[35]  Josette Bellan,et al.  Consistent Boundary Conditions for Multicomponent Real Gas Mixtures Based on Characteristic Waves , 2002 .

[36]  Richard D. Branam,et al.  Characterization of cryogenic injection at supercritical pressure , 2001 .

[37]  Joseph C. Oefelein,et al.  Thermophysical characteristics of shear-coaxial LOX–H2 flames at supercritical pressure , 2005 .

[38]  Bassam B. Dally,et al.  Flame response to acoustic excitation in a rectangular rocket combustor with LOx/H2 propellants , 2011, CEAS 2011.

[39]  S. Menon,et al.  Simulation of unsteady combustion in a LOX-GH2 fueled rocket engine , 2009 .

[40]  W. Sirignano,et al.  Fluid Dynamics and Transport of Droplets and Sprays: Index , 2010 .

[41]  Sébastien Candel,et al.  Experimental investigation of cryogenic flame dynamics under transverse acoustic modulations , 2013 .

[42]  Dmitry Suslov,et al.  Steady-state high pressure LOx/H2 rocket engine combustion , 2007 .

[43]  Bruce Chehroudi,et al.  Measurements in an Acoustically-Driven Coaxial Jet Under Sub-, Near-, and Supercritical Conditions (PREPRINT) , 2005 .

[44]  Sébastien Candel,et al.  Transcritical oxygen/transcritical or supercritical methane combustion , 2005 .

[45]  Thomas Schmitt,et al.  Large-Eddy Simulation of Single-Species Flows Under Supercritical Thermodynamic Conditions , 2010 .

[46]  Ben T. Zinn A theoretical study of nonlinear combustion instability in liquid-propellant rocket engines. , 1968 .

[47]  R. Reid,et al.  The Properties of Gases and Liquids , 1977 .

[48]  S. Candel,et al.  Pressure effects on nonpremixed strained flames , 2008 .

[49]  Sébastien Candel,et al.  Large eddy simulations of multiple transcritical coaxial flames submitted to a high-frequency transverse acoustic modulation , 2015 .

[50]  Hiroshi Tamura,et al.  Injection and Mixing Processes in High-Pressure Liquid Oxygen/Gaseous Hydrogen Rocket Combustors , 2000 .

[51]  Sébastien Candel,et al.  Structure of cryogenic flames at elevated pressures , 2000 .

[52]  C. P. Lee,et al.  Acoustic radiation pressure , 1992 .

[53]  Bruce Chehroudi,et al.  THE FRACTAL GEOMETRY OF ROUND TURBULENT CRYOGENIC NITROGEN JETS AT SUBCRITICAL AND SUPERCRITICAL PRESSURES , 2004 .

[54]  Sébastien Candel,et al.  Experiments and numerical simulation of mixing under supercritical conditions , 2012 .

[55]  G. Soave Equilibrium constants from a modified Redlich-Kwong equation of state , 1972 .

[56]  Hiroshi Tamura,et al.  Propellant injection in a liquid oxygen/gaseous hydrogen rocket engine , 1996 .

[57]  Michael Oschwald,et al.  Spreading Angle and Centerline Variation of Density of Supercritical Nitrogen Jets , 2002 .

[58]  Joseph C. Oefelein,et al.  Modeling High-Pressure Mixing and Combustion Processes in Liquid Rocket Engines , 1998 .

[59]  Vigor Yang,et al.  CRYOGENIC FLUID JETS AND MIXING LAYERS IN TRANSCRITICAL AND SUPERCRITICAL ENVIRONMENTS , 2006 .

[60]  William A. Sirignano,et al.  Numerical Study of the Transient Vaporization of an Oxygen Droplet at Sub- and Super-Critical Conditions , 1993 .

[61]  Matthew P. Juniper,et al.  STRUCTURE AND DYNAMICS OF CRYOGENIC FLAMES AT SUPERCRITICAL PRESSURE , 2006 .

[62]  J. Telaar,et al.  Raman Measurements of Cryogenic Injection at Supercritical Pressure , 2003 .

[63]  Michael Oschwald,et al.  Supercritical nitrogen free jet investigated by spontaneous Raman scattering , 1999 .