Quadpack computation of Feynman loop integrals

Abstract The paper addresses a numerical computation of Feynman loop integrals, which are computed by an extrapolation to the limit as a parameter in the integrand tends to zero. An important objective is to achieve an automatic computation which is effective for a wide range of instances. Singular or near singular integrand behavior is handled via an adaptive partitioning of the domain, implemented in an iterated/repeated multivariate integration method. Integrand singularities possibly introduced via infrared (IR) divergence at the boundaries of the integration domain are addressed using a version of the Dqags algorithm from the integration package Quadpack, which uses an adaptive strategy combined with extrapolation. The latter is justified for a large class of problems by the underlying asymptotic expansions of the integration error. For IR divergent problems, an extrapolation scheme is presented based on dimensional regularization.

[1]  Elise de Doncker,et al.  Transformation, Reduction and Extrapolation Techniques for Feynman Loop Integrals , 2010, ICCSA.

[2]  T. Binoth,et al.  Numerical evaluation of multi-loop integrals by sector decomposition , 2004 .

[3]  Junpei Fujimoto,et al.  New implementation of the sector decomposition on FORM , 2009, 0902.2656.

[4]  J. Van Voorst,et al.  Loop integration results using numerical extrapolation for a non-scalar integral , 2004 .

[5]  Nakanish Graph Theory and Feynman Integrals , 1971 .

[6]  Elise de Doncker,et al.  Quadrature error expansions , 1993 .

[7]  Charalampos Anastasiou,et al.  Evaluating multi-loop Feynman diagrams with infrared and threshold singularities numerically , 2007 .

[8]  Ernst Joachim Weniger,et al.  Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series , 1989 .

[9]  Claude Brezinski,et al.  A general extrapolation algorithm , 1980 .

[10]  Avram Sidi,et al.  Convergence properties of some nonlinear sequence transformations , 1979 .

[11]  A. Sim,et al.  Some Properties of a Generalization of the Richardson Extrapolation Process , 2022 .

[12]  J. Fujimoto,et al.  Numerical Evaluation of Feynman Integrals by a Direct Computation Method , 2008 .

[13]  S. Lang,et al.  An Introduction to Fourier Analysis and Generalised Functions , 1959 .

[14]  M. Veltman,et al.  One-loop corrections for e + e - annihilation into μ + μ - in the Weinberg model , 1979 .

[15]  J. N. Lyness,et al.  Van der Monde systems and numerical differentiation , 1966 .

[16]  T. Binoth,et al.  An automatized algorithm to compute infrared divergent multi-loop integrals , 2000 .

[17]  J. Vermaseren,et al.  New algorithms for one-loop integrals , 1990 .

[18]  T. Kinoshita Mass singularities of Feynman amplitudes , 1962 .

[19]  T. Muta FOUNDATIONS OF QUANTUM CHROMODYNAMICS: An Introduction to Perturbative Methods in Gauge Theories , 2009 .

[20]  Elise de Doncker,et al.  Computation of loop integrals using extrapolation , 2004 .

[21]  Fyodor V. Tkachov Algebraic algorithms for multiloop calculations The first 15 years. What's next? , 1996 .

[22]  David Levin,et al.  Two New Classes of Nonlinear Transformations for Accelerating the Convergence of Infinite Integrals and Series , 1981 .

[23]  Elise de Doncker,et al.  Online support for multivariate integration , 2005 .

[24]  J. N. Lyness Applications of extrapolation techniques to multidimensional quadrature of some integrand functions with a singularity , 1976 .

[25]  Nobuyuki Hamaguchi,et al.  Numerical precision control and GRACE , 2006 .

[26]  G. Hooft,et al.  Regularization and Renormalization of Gauge Fields , 1972 .

[27]  R. Bulirsch,et al.  Bemerkungen zur Romberg-Integration , 1964 .

[28]  B. Burrows,et al.  Lower bounds for quartic anharmonic and double‐well potentials , 1993 .

[29]  J. N. Lyness,et al.  On quadrature error expansions. Part I , 1987 .

[30]  Elise de Doncker,et al.  Recursive box and vertex integrations for the one-loop hexagon reduction in the physical region , 2010 .

[31]  P. Wynn,et al.  On a Device for Computing the e m (S n ) Transformation , 1956 .

[32]  Shujun Li,et al.  Regularization and Extrapolation Methods for Infrared Divergent Loop Integrals , 2005, International Conference on Computational Science.

[33]  Yoshimitsu Shimizu,et al.  Numerical Approach to One-Loop Integrals , 1992 .

[34]  Avram Sidi,et al.  An algorithm for a generalization of the Richardson extrapolation process , 1987 .

[35]  Fukuko Yuasa Precise Numerical Results of IR-vertex and box integration with Extrapolation Method , 2009 .

[36]  Y. Kurihara Dimensionally regularized one-loop tensor integralswith massless internal particles , 2005 .

[37]  Avram Sidi,et al.  Some Properties of a Generalization of the Richardson Extrapolation Process , 1979 .

[38]  J.A.M. Vermaseren,et al.  New features of FORM , 2000 .

[39]  T.Kaneko,et al.  Numerical Contour Integration for Loop Integrals , 2005 .

[40]  Robert Piessens,et al.  Quadpack: A Subroutine Package for Automatic Integration , 2011 .

[41]  PSIG BIGPSI,et al.  AN ALGORITHM FOR A GENERALIZATION OF THE RICHARDSON EXTRAPOLATION PROCESS , 2022 .

[42]  S. Kawabata,et al.  A new version of the multi-dimensional integration and event generation package BASES/SPRING , 1995 .

[43]  C. G. Bollini,et al.  Dimensional renorinalization : The number of dimensions as a regularizing parameter , 1972, Il Nuovo Cimento B.

[44]  Elise de Doncker,et al.  Computation of Feynman loop integrals , 2007 .

[45]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .