Space-Efficient Error Reduction for Unitary Quantum Computations
暂无分享,去创建一个
Bill Fefferman | Tomoyuki Morimae | Cedric Yen-Yu Lin | Hirotada Kobayashi | Harumichi Nishimura | T. Morimae | H. Nishimura | H. Kobayashi | B. Fefferman | Bill Fefferman | Hirotada Kobayashi
[1] François Le Gall,et al. Stronger methods of making quantum interactive proofs perfectly complete , 2012, ITCS '13.
[2] Alexei Y. Kitaev,et al. Parallelization, amplification, and exponential time simulation of quantum interactive proof systems , 2000, STOC '00.
[3] Charles H. Bennett. Time/Space Trade-Offs for Reversible Computation , 1989, SIAM J. Comput..
[4] R. Schumann. Quantum Information Theory , 2000, quant-ph/0010060.
[5] Bill Fefferman,et al. A Complete Characterization of Unitary Quantum Space , 2016, ITCS.
[6] Hirotada Kobayashi,et al. Achieving perfect completeness in classical-witness quantum merlin-arthur proof systems , 2011, Quantum Inf. Comput..
[7] Richard Jozsa,et al. Matchgate and space-bounded quantum computations are equivalent , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[8] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[9] Lov K. Grover. A fast quantum mechanical algorithm for database search , 1996, STOC '96.
[10] Amnon Ta-Shma,et al. Inverting well conditioned matrices in quantum logspace , 2013, STOC '13.
[11] John Watrous,et al. Quantum Computational Complexity , 2008, Encyclopedia of Complexity and Systems Science.
[12] John Watrous. Quantum Simulations of Classical Random Walks and Undirected Graph Connectivity , 2001, J. Comput. Syst. Sci..
[13] Chris Marriott,et al. Quantum Arthur–Merlin games , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..
[14] Mikhail N. Vyalyi,et al. Classical and Quantum Computation , 2002, Graduate studies in mathematics.
[15] Yong Zhang,et al. Fast amplification of QMA , 2009, Quantum Inf. Comput..
[16] Michael A. Nielsen,et al. The Solovay-Kitaev algorithm , 2006, Quantum Inf. Comput..
[17] David P. DiVincenzo,et al. Classical simulation of noninteracting-fermion quantum circuits , 2001, ArXiv.
[18] Andris Ambainis,et al. 1-way quantum finite automata: strengths, weaknesses and generalizations , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).
[19] Bill Fefferman,et al. Quantum Merlin Arthur with Exponentially Small Gap , 2016, ArXiv.
[20] Wouter A. Dreschler,et al. Amplification , 1994, Definitions.
[21] Tsuyoshi Ito,et al. Quantum interactive proofs with weak error bounds , 2010, ITCS '12.
[22] Leslie G. Valiant,et al. Quantum Circuits That Can Be Simulated Classically in Polynomial Time , 2002, SIAM J. Comput..
[23] John Watrous,et al. Space-Bounded Quantum Complexity , 1999, J. Comput. Syst. Sci..
[24] N. S. Barnett,et al. Private communication , 1969 .
[25] Dieter van Melkebeek,et al. Time-Space Efficient Simulations of Quantum Computations , 2012, Theory Comput..
[26] John Watrous,et al. On the complexity of simulating space-bounded quantum computations , 2004, computational complexity.
[27] A. Kitaev. Quantum computations: algorithms and error correction , 1997 .
[28] John Watrous,et al. Zero-knowledge against quantum attacks , 2005, STOC '06.