Space-Efficient Error Reduction for Unitary Quantum Computations

This paper develops general space-efficient methods for error reduction for unitary quantum computation. Consider a polynomial-time quantum computation with completeness $c$ and soundness $s$, either with or without a witness (corresponding to QMA and BQP, respectively). To convert this computation into a new computation with error at most $2^{-p}$, the most space-efficient method known requires extra workspace of ${O \bigl( p \log \frac{1}{c-s} \bigr)}$ qubits. This space requirement is too large for scenarios like logarithmic-space quantum computations. This paper presents error-reduction methods for unitary quantum computations (i.e., computations without intermediate measurements) that require extra workspace of just ${O \bigl( \log \frac{p}{c-s} \bigr)}$ qubits. This in particular gives the first methods of strong amplification for logarithmic-space unitary quantum computations with two-sided bounded error. This also leads to a number of consequences in complexity theory, such as the uselessness of quantum witnesses in bounded-error logarithmic-space unitary quantum computations, the PSPACE upper bound for QMA with exponentially-small completeness-soundness gap, and strong amplification for matchgate computations.

[1]  François Le Gall,et al.  Stronger methods of making quantum interactive proofs perfectly complete , 2012, ITCS '13.

[2]  Alexei Y. Kitaev,et al.  Parallelization, amplification, and exponential time simulation of quantum interactive proof systems , 2000, STOC '00.

[3]  Charles H. Bennett Time/Space Trade-Offs for Reversible Computation , 1989, SIAM J. Comput..

[4]  R. Schumann Quantum Information Theory , 2000, quant-ph/0010060.

[5]  Bill Fefferman,et al.  A Complete Characterization of Unitary Quantum Space , 2016, ITCS.

[6]  Hirotada Kobayashi,et al.  Achieving perfect completeness in classical-witness quantum merlin-arthur proof systems , 2011, Quantum Inf. Comput..

[7]  Richard Jozsa,et al.  Matchgate and space-bounded quantum computations are equivalent , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[9]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[10]  Amnon Ta-Shma,et al.  Inverting well conditioned matrices in quantum logspace , 2013, STOC '13.

[11]  John Watrous,et al.  Quantum Computational Complexity , 2008, Encyclopedia of Complexity and Systems Science.

[12]  John Watrous Quantum Simulations of Classical Random Walks and Undirected Graph Connectivity , 2001, J. Comput. Syst. Sci..

[13]  Chris Marriott,et al.  Quantum Arthur–Merlin games , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..

[14]  Mikhail N. Vyalyi,et al.  Classical and Quantum Computation , 2002, Graduate studies in mathematics.

[15]  Yong Zhang,et al.  Fast amplification of QMA , 2009, Quantum Inf. Comput..

[16]  Michael A. Nielsen,et al.  The Solovay-Kitaev algorithm , 2006, Quantum Inf. Comput..

[17]  David P. DiVincenzo,et al.  Classical simulation of noninteracting-fermion quantum circuits , 2001, ArXiv.

[18]  Andris Ambainis,et al.  1-way quantum finite automata: strengths, weaknesses and generalizations , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[19]  Bill Fefferman,et al.  Quantum Merlin Arthur with Exponentially Small Gap , 2016, ArXiv.

[20]  Wouter A. Dreschler,et al.  Amplification , 1994, Definitions.

[21]  Tsuyoshi Ito,et al.  Quantum interactive proofs with weak error bounds , 2010, ITCS '12.

[22]  Leslie G. Valiant,et al.  Quantum Circuits That Can Be Simulated Classically in Polynomial Time , 2002, SIAM J. Comput..

[23]  John Watrous,et al.  Space-Bounded Quantum Complexity , 1999, J. Comput. Syst. Sci..

[24]  N. S. Barnett,et al.  Private communication , 1969 .

[25]  Dieter van Melkebeek,et al.  Time-Space Efficient Simulations of Quantum Computations , 2012, Theory Comput..

[26]  John Watrous,et al.  On the complexity of simulating space-bounded quantum computations , 2004, computational complexity.

[27]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[28]  John Watrous,et al.  Zero-knowledge against quantum attacks , 2005, STOC '06.