Nonlinear mechanisms of filamentation in broad-area semiconductor lasers

There are three nonlinear mechanisms that can lead to filamentation in broad-area semiconductor lasers: gain-saturation-induced changes in the refractive index through the linewidth-enhancement factor, self-focusing due to heat-induced index changes, and self-defocusing through intensity-dependent index changes in the cladding layer. We present a theoretical model to analyze these mechanisms and their relative roles in destabilizing the laser output. We find that there exists a critical value for the linewidth-enhancement factor below which broad area lasers are stable for wide stripe widths (as wide as 250 /spl mu/m) and high pumping levels (as high as 20 times threshold). We also find that broad-area lasers are less susceptible to filamentation through self-defocusing and show how an intensity-dependent index in the cladding layer may be used to suppress filamentation caused by the linewidth-enhancement factor.

[1]  Robert J. Lang,et al.  Lateral modes of broad area semiconductor lasers: theory and experiment , 1991 .

[2]  S. S. Lee,et al.  Variations of linewidth enhancement factor and linewidth as a function of laser geometry in (AlGa)As lasers , 1989 .

[3]  David F. Welch,et al.  Spatial evolution of filaments in broad area diode laser amplifiers , 1993 .

[4]  G. Stegeman Chapter 1 – NONLINEAR GUIDED WAVE OPTICS , 1992 .

[5]  David F. Welch,et al.  Spontaneous filamentation in broad-area diode laser amplifiers , 1994 .

[6]  Govind P. Agrawal,et al.  Controlling filamentation in broad‐area semiconductor lasers and amplifiers , 1996 .

[7]  Michael L. Tilton,et al.  Modeling broad-area semiconductor optical amplifiers , 1993 .

[8]  David G. Mehuys,et al.  Filament formation in a tapered GaAlAs optical amplifier , 1993 .

[9]  G. Agrawal Effect of index antiguiding on the far-field distribution of stripe-geometry lasers , 1983 .

[10]  Antonio Mecozzi,et al.  4.3 terahertz four‐wave mixing spectroscopy of InGaAsP semiconductor amplfiers , 1994 .

[11]  M. Wright,et al.  Feedback effects in tapered broad-area semiconductor lasers and amplifiers , 1995, IEEE Photonics Technology Letters.

[12]  Stephan W Koch,et al.  Introduction to semiconductor optics , 1993 .

[13]  Lew Goldberg,et al.  Periodic filaments in reflective broad area semiconductor optical amplifiers , 1992 .

[14]  Govind P. Agrawal,et al.  Fast‐Fourier‐transform based beam‐propagation model for stripe‐geometry semiconductor lasers: Inclusion of axial effects , 1984 .

[15]  Jerome V Moloney,et al.  Spatiotemporal chaos in broad-area semiconductor lasers , 1993 .

[16]  Alan H. Paxton,et al.  Filament formation in semiconductor laser gain regions , 1991 .

[17]  James G. Fujimoto,et al.  Femtosecond measurements of the nonresonant nonlinear index in AlGaAs , 1990 .

[18]  U. Koren,et al.  Femtosecond index nonlinearities in InGaAsP optical amplifiers , 1993 .

[19]  Stephan W Koch,et al.  Filamentation and beam propagation in broad-area semiconductor lasers , 1995 .

[20]  J. Hohimer,et al.  Mode control in broad-area diode lasers by thermally induced lateral index tailoring , 1988 .

[21]  M. Lax,et al.  Channeling of Intense Electromagnetic Beams , 1981 .