Development and characterization of lithium-releasing silicate bioactive glasses and their scaffolds for bone repair

[1]  Chikara Ohtsuki,et al.  A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants , 2015, Journal of Materials Science: Materials in Medicine.

[2]  A. Boccaccini,et al.  Bioactive Copper-Doped Glass Scaffolds Can Stimulate Endothelial Cells in Co-Culture in Combination with Mesenchymal Stem Cells , 2014, PloS one.

[3]  M. Hirata,et al.  Acceleration of bone regeneration by local application of lithium: Wnt signal-mediated osteoblastogenesis and Wnt signal-independent suppression of osteoclastogenesis. , 2014, Biochemical pharmacology.

[4]  G. Gangenahalli,et al.  High Throughput Transcriptome Profiling of Lithium Stimulated Human Mesenchymal Stem Cells Reveals Priming towards Osteoblastic Lineage , 2013, PloS one.

[5]  Chengtie Wu,et al.  The cementogenic differentiation of periodontal ligament cells via the activation of Wnt/β-catenin signalling pathway by Li+ ions released from bioactive scaffolds. , 2012, Biomaterials.

[6]  Wei Fan,et al.  Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering. , 2012, Biomaterials.

[7]  M. Schumacher,et al.  Lithium enhances remyelination of peripheral nerves , 2012, Proceedings of the National Academy of Sciences.

[8]  H. Nazarian,et al.  In vitro bioactivity and biocompatibility of lithium substituted 45S5 bioglass , 2011 .

[9]  Aldo R Boccaccini,et al.  A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. , 2011, Biomaterials.

[10]  Reinhard Conradt,et al.  Sintering and crystallisation of 45S5 Bioglass® powder , 2009 .

[11]  J. Murat,et al.  Long-term Exposure to Low Lithium Concentrations Stimulates Proliferation, Modifies Stress Protein Expression Pattern and Enhances Resistance to Oxidative Stress in SH-SY5Y Cells , 2009, Neurochemical Research.

[12]  G. Omrani,et al.  Lithium's effect on bone mineral density. , 2009, Bone.

[13]  J. Chevalier,et al.  Sintering behaviour of 45S5 bioactive glass. , 2008, Acta biomaterialia.

[14]  R. Hill,et al.  Effect of P2O5 content in two series of soda lime phosphosilicate glasses on structure and properties – Part I: NMR , 2008 .

[15]  G. Reilly,et al.  Differential alkaline phosphatase responses of rat and human bone marrow derived mesenchymal stem cells to 45S5 bioactive glass. , 2007, Biomaterials.

[16]  Aldo R Boccaccini,et al.  Sintering, crystallisation and biodegradation behaviour of Bioglass-derived glass-ceramics. , 2007, Faraday discussions.

[17]  Yiyong Wu,et al.  Structural characterization of sol–gel composites using TEOS/MEMO as precursors , 2007 .

[18]  Larry L. Hench,et al.  The story of Bioglass® , 2006, Journal of materials science. Materials in medicine.

[19]  F. Saito,et al.  Synthesis of high purity nano-sized hydroxyapatite powder by microwave-hydrothermal method , 2006 .

[20]  J. Hazemann,et al.  Kinetics of iron redox reactions in silicate liquids: A high-temperature X-ray absorption and Raman spectroscopy study , 2006 .

[21]  Aldo R Boccaccini,et al.  45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering. , 2006, Biomaterials.

[22]  R. Baron,et al.  Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[23]  K. Powers,et al.  Effect of pH and ionic strength on the reactivity of Bioglass 45S5. , 2005, Biomaterials.

[24]  D. Bernache-Assollant,et al.  Synthesis, characterization and thermal behavior of apatitic tricalcium phosphate , 2003 .

[25]  C. Rey,et al.  Mechanisms of Action and Therapeutic Potential of Strontium in Bone , 2001, Calcified Tissue International.

[26]  L L Hench,et al.  Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution. , 2001, Journal of biomedical materials research.

[27]  S. Ban,et al.  Morphology and microstructure of electrochemically deposited calcium phosphates in a modified simulated body fluid. , 1998, Biomaterials.

[28]  K. Nakanishi,et al.  Induction and morphology of hydroxyapatite, precipitated from metastable simulated body fluids on sol-gel prepared silica. , 1993, Biomaterials.

[29]  W. F. Hammetter,et al.  Crystallization Kinetics of a Complex Lithium Silicate Glass‐Ceramic , 1987 .

[30]  L. Hench,et al.  Hot stage transmission electron microscopy of crystallisation in a lithia-silica glass , 1970 .

[31]  J. Cade Lithium salts in the treatment of psychotic excitement. , 1949, The Medical journal of Australia.

[32]  Julian R Jones,et al.  Review of bioactive glass: from Hench to hybrids. , 2013, Acta biomaterialia.

[33]  J. Ferreira,et al.  Influence of lithium oxide as auxiliary flux on the properties of triaxial porcelain bodies , 2006 .

[34]  D. A. Walker,et al.  Effect of lithium on the metabolic response to parathyroid hormone. , 1987, Mineral and electrolyte metabolism.

[35]  B. Darwent Bond dissociation energies in simple molecules , 1970 .