Research Progress on Estimation of the Atmospheric Boundary Layer Height

[1]  Yuxian Shi,et al.  Comparison of four different types of planetary boundary layer heights during a haze episode in Beijing. , 2020, The Science of the total environment.

[2]  Yu Song,et al.  Characteristics of the atmospheric boundary layer and its relation with PM2.5 during haze episodes in winter in the North China Plain , 2020, Atmospheric Environment.

[3]  Yu Song,et al.  Influence of Intermittent Turbulence on Air Pollution and Its Dispersion in Winter 2016/2017 over Beijing, China , 2020, Journal of Meteorological Research.

[4]  Tianning Su,et al.  A new method to retrieve the diurnal variability of planetary boundary layer height from lidar under different thermodynamic stability conditions , 2020 .

[5]  Y. Dou,et al.  Regional atmospheric pollutant transport mechanisms over the North China Plain driven by topography and planetary boundary layer processes , 2020 .

[6]  Alférez Mj,et al.  Evaluation of the method , 1968, Definitions.

[7]  Yu Song,et al.  A study on atmospheric turbulence structure and intermittency during heavy haze pollution in the Beijing area , 2019, Science China Earth Sciences.

[8]  X. Xia,et al.  Climatology of mixing layer height in China based on multi-year meteorological data from 2000 to 2013 , 2019, Atmospheric Environment.

[9]  Zhiqiu Gao,et al.  Estimate of boundary-layer depth in Nanjing city using aerosol lidar data during 2016–2017 winter , 2019, Atmospheric Environment.

[10]  Xiangde Xu,et al.  The impact of meteorological changes from 2013 to 2017 on PM2.5 mass reduction in key regions in China , 2019, Science China. Earth Sciences.

[11]  Y. Li,et al.  Surface Meteorological Conditions and Boundary Layer Height Variations During an Air Pollution Episode in Nanjing, China , 2019, Journal of Geophysical Research: Atmospheres.

[12]  Yu Song,et al.  Effects of turbulence structure and urbanization on the heavy haze pollution process , 2019, Atmospheric Chemistry and Physics.

[13]  F. Hu,et al.  Multiple technical observations of the atmospheric boundary layer structure of a red warning haze episode in Beijing , 2019 .

[14]  Hong Wang,et al.  Satellite-derived PM2.5 concentration trends over Eastern China from 1998 to 2016: Relationships to emissions and meteorological parameters. , 2019, Environmental pollution.

[15]  C. Grimmond,et al.  Atmospheric boundary‐layer characteristics from ceilometer measurements. Part 1: A new method to track mixed layer height and classify clouds , 2018, Quarterly Journal of the Royal Meteorological Society.

[16]  M. Kallistratova,et al.  Sodar Sounding of the Atmospheric Boundary Layer: Review of Studies at the Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences , 2018, Izvestiya, Atmospheric and Oceanic Physics.

[17]  L. Alados-Arboledas,et al.  Study of the planetary boundary layer by microwave radiometer, elastic lidar and Doppler lidar estimations in Southern Iberian Peninsula , 2018, Atmospheric Research.

[18]  Zhong‐Hai Li,et al.  Dynamics of thinning and destruction of the continental cratonic lithosphere: Numerical modeling , 2018, Science China Earth Sciences.

[19]  Wei Gong,et al.  Determination of boundary layer top on the basis of the characteristics of atmospheric particles , 2018 .

[20]  Zhanqing Li,et al.  Aerosol and boundary-layer interactions and impact on air quality , 2017 .

[21]  Huarong Zhao,et al.  Relative contributions of boundary-layer meteorological factors to the explosive growth of PM2.5 during the red-alert heavy pollution episodes in Beijing in December 2016 , 2017, Journal of Meteorological Research.

[22]  Cheng Liu,et al.  Feedback effects of boundary-layer meteorological factors on cumulative explosive growth of PM 2.5 during winter heavy pollution episodes in Beijing from 2013 to 2016 , 2017 .

[23]  A. Haefele,et al.  PathfinderTURB: an automatic boundary layer algorithm. Development, validation and application to study the impact on in situ measurements at the Jungfraujoch , 2017 .

[24]  A. Ding,et al.  Observation-based estimation of aerosol-induced reduction of planetary boundary layer height , 2017, Advances in Atmospheric Sciences.

[25]  Peng Gao,et al.  Study of PBLH and Its Correlation with Particulate Matter from One-Year Observation over Nanjing, Southeast China , 2017, Remote. Sens..

[26]  David Pozo-Vázquez,et al.  A new methodology for PBL height estimations based on lidar depolarization measurements: analysis and comparison against MWR and WRF model-based results , 2017 .

[27]  Ting Yang,et al.  Technical note: Boundary layer height determination from lidar for improving air pollution episode modeling: development of new algorithm and evaluation , 2017 .

[28]  Yi Yang,et al.  Evaluation of retrieval methods of daytime convective boundary layer height based on lidar data , 2017 .

[29]  Yuanyong Chang,et al.  Ceilometer-Based Analysis of Shanghai’s Boundary Layer Height (under Rain- and Fog-Free Conditions) , 2017 .

[30]  Meng Huang,et al.  Estimate of Boundary-Layer Depth Over Beijing, China, Using Doppler Lidar Data During SURF-2015 , 2017, Boundary-Layer Meteorology.

[31]  Gary A. Morris,et al.  Comparison of aerosol lidar retrieval methods for boundary layer height detection using ceilometer aerosol backscatter data , 2016 .

[32]  Francesc Rocadenbosch,et al.  Adaptive Estimation of the Stable Boundary Layer Height Using Combined Lidar and Microwave Radiometer Observations , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[33]  Z. Ning,et al.  Comparison of the Mixing Layer Height Determination Methods using Lidar and Microwave Radiometer , 2016 .

[34]  Zhao Lin,et al.  The different influence of the residual layer on the development of the summer convective boundary layer in two deserts in northwest China , 2016, Theoretical and Applied Climatology.

[35]  J. Porteneuve,et al.  Ground-Based Rayleigh-Mie Doppler Lidar for Wind Measurements in the Middle Atmosphere , 2016 .

[36]  刘洋 Liu Yang,et al.  Retrieve of Planetary Boundary Layer Height Based on Image Edge Detection , 2016 .

[37]  Wengang Zhang,et al.  Comparison of atmospheric profiles between microwave radiometer retrievals and radiosonde soundings , 2015 .

[38]  E. Syrakov General diagnostic equations and regime analysis for the height of the planetary boundary layer , 2015 .

[39]  Dong-In Lee,et al.  Atmospheric thickness and vertical structure properties in wintertime precipitation events from microwave radiometer, radiosonde and wind profiler observations , 2015 .

[40]  Xin Wang,et al.  A diagnostic analysis on the effect of the residual layer in convective boundary layer development near Mongolia using 20th century reanalysis data , 2015, Advances in Atmospheric Sciences.

[41]  G. A. Moreira,et al.  Planetary boundary layer height estimation from doppler wind lidar measurements, radiosonde and hysplit model comparison , 2015 .

[42]  Bertrand Calpini,et al.  Determination and climatology of the planetary boundary layer height above the Swiss plateau by in situ and remote sensing measurements as well as by the COSMO-2 model , 2014 .

[43]  Susanne Crewell,et al.  Mixing-layer height retrieval with ceilometer and Doppler lidar: from case studies to long-term assessment , 2014 .

[44]  A vertical sounding of severe haze process in Guangzhou area , 2014, Science China Earth Sciences.

[45]  Jimy Dudhia,et al.  Objectively Determined Fair-Weather NBL Features in ARW-WRF and Their Comparison to CASES-97 Observations , 2014 .

[46]  Francesc Rocadenbosch,et al.  Atmospheric Boundary Layer Height Monitoring Using a Kalman Filter and Backscatter Lidar Returns , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[47]  Donald H. Lenschow,et al.  Determining Boundary-Layer Height from Aircraft Measurements , 2014, Boundary-Layer Meteorology.

[48]  Randolph Ware,et al.  Effect of off-zenith observations on reducing the impact of precipitation on ground-based microwave radiometer measurement accuracy , 2014 .

[49]  R. Newsom,et al.  Estimation of the mixing layer height over a high altitude site in Central Himalayan region by using Doppler lidar , 2014 .

[50]  S. Argentini,et al.  Observed and Modelled Convective Mixing-Layer Height at Dome C, Antarctica , 2014, Boundary-Layer Meteorology.

[51]  Zhanqing Li,et al.  Detection, variations and intercomparison of the planetary boundary layer depth from radiosonde, lidar and infrared spectrometer , 2013 .

[52]  A. Ding,et al.  Intense atmospheric pollution modifies weather: a case of mixed biomass burning with fossil fuel combustion pollution in eastern China , 2013 .

[53]  Ellsworth J. Welton,et al.  Improved boundary layer depth retrievals from MPLNET , 2013 .

[54]  A. Holtslag,et al.  Improving Stable Boundary-Layer Height Estimation Using a Stability-Dependent Critical Bulk Richardson Number , 2013, Boundary-Layer Meteorology.

[55]  N. Krusche,et al.  Estimation of the Boundary Layer Height in the Southern Region of Brazil , 2013 .

[56]  Delong Zhao,et al.  Evolution of planetary boundary layer under different weather conditions, and its impact on aerosol concentrations , 2013 .

[57]  Shuyan Liu,et al.  Urban Boundary Layer Height Characteristics and Relationship with Particulate Matter Mass Concentrations in Xi'an, Central China , 2013 .

[58]  Anthony J. Mannucci,et al.  Planetary boundary layer heights from GPS radio occultation refractivity and humidity profiles , 2012 .

[59]  J. Notholt,et al.  Lidar measurement of planetary boundary layer height and comparison with microwave profiling radiometer observation , 2012 .

[60]  Evan A. Kalina,et al.  Stability and turbulence in the atmospheric boundary layer: A comparison of remote sensing and tower observations , 2012 .

[61]  Wang Lin Comparison of Retrieval Methods of Planetary Boundary Layer Height from Lidar Data , 2012 .

[62]  L. Sauvage,et al.  Evaluation of Mixing-Height Retrievals from Automatic Profiling Lidars and Ceilometers in View of Future Integrated Networks in Europe , 2012, Boundary-Layer Meteorology.

[63]  Qiang Zhang,et al.  Relationship of atmospheric boundary layer depth with thermodynamic processes at the land surface in arid regions of China , 2011 .

[64]  Alexandros Papayannis,et al.  Inter-comparison of lidar and ceilometer retrievals for aerosol and Planetary Boundary Layer profiling over Athens, Greece , 2011 .

[65]  Qiang Zhang,et al.  Characteristics and Numerical Simulations of Extremely Large Atmospheric Boundary-layer Heights over an Arid Region in North-west China , 2011 .

[66]  Liu Hong-yan The temperature profile comparison between the ground-based microwave radiometer and the other instrument for the recent three years , 2011 .

[67]  Xin‐Zhong Liang,et al.  Observed Diurnal Cycle Climatology of Planetary Boundary Layer Height , 2010 .

[68]  E. O'connor,et al.  A Method for Estimating the Turbulent Kinetic Energy Dissipation Rate from a Vertically Pointing Doppler Lidar, and Independent Evaluation from Balloon-Borne In Situ Measurements , 2010 .

[69]  D. Seidel,et al.  Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis , 2010 .

[70]  R. Harrison,et al.  Boundary layer dynamics over London, UK, as observed using Doppler lidar , 2010 .

[71]  Chris G. Collier,et al.  Remote sensing of the tropical rain forest boundary layer using pulsed Doppler lidar , 2010 .

[72]  M. Ratnam,et al.  A robust method to determine global distribution of atmospheric boundary layer top from COSMIC GPS RO measurements , 2010 .

[73]  Robert M. Banta,et al.  Doppler Lidar Estimation of Mixing Height Using Turbulence, Shear, and Aerosol Profiles , 2009 .

[74]  W. Grey,et al.  Observations of mesoscale and boundary-layer scale circulations affecting dust transport and uplift over the Sahara , 2008 .

[75]  Stefan Emeis,et al.  Surface-based remote sensing of the mixing-layer height a review , 2008 .

[76]  Rasmus Fensholt,et al.  Remote Sensing , 2008, Encyclopedia of GIS.

[77]  W. Sheng A study on atmospheric boundary layer structure on a clear day in the arid region in northwest China , 2008 .

[78]  LAUS,et al.  Surface-based remote sensing of the mixing-layer height – a review , 2008 .

[79]  Gert-Jan Steeneveld,et al.  Diagnostic Equations for the Stable Boundary Layer Height: Evaluation and Dimensional Analysis , 2007 .

[80]  A. Baklanov,et al.  Further comments on the equilibrium height of neutral and stable planetary boundary layers , 2007 .

[81]  A. Holtslag,et al.  Comments on deriving the equilibrium height of the stable boundary layer , 2007 .

[82]  Robert M. Banta,et al.  Turbulent Velocity-Variance Profiles in the Stable Boundary Layer Generated by a Nocturnal Low-Level Jet , 2006 .

[83]  Stefan Emeis,et al.  Remote Sensing Methods to Investigate Boundary-layer Structures relevant to Air Pollution in Cities , 2006 .

[84]  Jie Chen,et al.  Observational and modeling studies of urban atmospheric boundary-layer height and its evolution mechanisms , 2006 .

[85]  Andrea Lammert,et al.  Determination of the Atmospheric Boundary Layer Height from Radiosonde and Lidar Backscatter , 2006 .

[86]  Song Xingzhuo Determination of Atmospheric Boundary Layer Height in Unstable Conditions over the Middle Tibetan Plateau , 2006 .

[87]  Ari Karppinen,et al.  Mixing height determination by ceilometer , 2005 .

[88]  K. Ha,et al.  A comparison of methods to estimate the height of stable boundary layer over a temperate grassland , 2005 .

[89]  Christoph Munkel,et al.  New optical concept for commercial lidar ceilometers scanning the boundary layer , 2004, SPIE Remote Sensing.

[90]  L. Mahrt,et al.  Evaluating Formulations of Stable Boundary Layer Height , 2004 .

[91]  Stefan Emeis,et al.  Frequency distributions of the mixing height over an urban area from SODAR data , 2004 .

[92]  Francesc Rocadenbosch,et al.  Determination of the mixing layer height from regular lidar measurements in the Barcelona area , 2004, SPIE Remote Sensing.

[93]  S. Zilitinkevich,et al.  Calculation Of The Height Of The Stable Boundary Layer In Practical Applications , 2002 .

[94]  Tony Honoré,et al.  The Empirical Method , 2002 .

[95]  A. Smedman,et al.  Diagnostic and prognostic equations for the depth of the stably stratified Ekman boundary layer , 2002 .

[96]  M. Heikinheimo,et al.  Variability Of The Stable And Unstable Atmospheric Boundary-Layer Height And Its Scales Over A Boreal Forest , 2001 .

[97]  M. Gassmann,et al.  Nocturnal stable boundary layer height model and its application , 2001 .

[98]  Donald H. Lenschow,et al.  An Objective Method for Deriving Atmospheric Structure from Airborne Lidar Observations , 2000 .

[99]  Stephen A. Cohn,et al.  Boundary Layer Height and Entrainment Zone Thickness Measured by Lidars and Wind-Profiling Radars , 2000 .

[100]  Judith A. Curry,et al.  A Large Eddy Simulation Study of a Quasi-Steady, Stably Stratified Atmospheric Boundary Layer , 2000 .

[101]  Petra Seibert,et al.  Review and intercomparison of operational methods for the determination of the mixing height , 2000 .

[102]  Raymond M. Hoff,et al.  The Detection of Mixed Layer Depth and Entrainment Zone Thickness from Lidar Backscatter Profiles , 1999 .

[103]  Allen B. White,et al.  A Comparison of Mixing Depths Observed by Ground-Based Wind Profilers and an Airborne Lidar , 1999 .

[104]  C. Flamant,et al.  Urban boundary-layer height determination from lidar measurements over the paris area. , 1999, Applied optics.

[105]  E. Ohtaki,et al.  An Independent Method to Determine the Height of the Mixed Layer , 1997 .

[106]  F. Beyrich,et al.  Mixing height estimation from sodar data — A critical discussion☆ , 1997 .

[107]  C. Flamant,et al.  LIDAR DETERMINATION OF THE ENTRAINMENT ZONE THICKNESS AT THE TOP OF THE UNSTABLE MARINE ATMOSPHERIC BOUNDARY LAYER , 1997 .

[108]  A. Holtslag,et al.  Evaluation and model impacts of alternative boundary-layer height formulations , 1996 .

[109]  D. Mironov,et al.  A multi-limit formulation for the equilibrium depth of a stably stratified boundary layer , 1996 .

[110]  W. G. Melbourne,et al.  Initial Results of Radio Occultation Observations of Earth's Atmosphere Using the Global Positioning System , 1996, Science.

[111]  F. Beyrich,et al.  Mixing-height estimation in the convective boundary layer using sodar data , 1995 .

[112]  Sven-Erik Gryning,et al.  An applied model for the height of the daytime mixed layer and the entrainment zone , 1994 .

[113]  J. R. Garratt,et al.  Review: the atmospheric boundary layer , 1994 .

[114]  Allen B. White,et al.  Boundary-layer depth and entrainment zone characterization with a boundary-layer profiler , 1994 .

[115]  T. Bergot An introduction to boundary layer meteorology - Par Roland B. Stull , 1994 .

[116]  E. Batchvarova,et al.  Parametrization of the depth of the entrainment zone above the daytime mixed layer , 1994 .

[117]  C. Fairall The Humidity and Temperature Sensitivity of Clear-Air Radars in the Convective Boundary Layer , 1991 .

[118]  Sven-Erik Gryning,et al.  Applied model for the growth of the daytime mixed layer , 1991 .

[119]  M. P. Singh,et al.  Structure of the Indian southwesterly pre-monsoon and monsoon boundary layers: Observations and numerical simulation , 1990 .

[120]  J. Porteneuve,et al.  A Doppler lidar for measuring winds in the middle atmosphere , 1989 .

[121]  J. Casanova,et al.  An empirical method to evaluate the height of the convective boundary layer by using small mast measurements , 1988 .

[122]  R. Stull An Introduction to Boundary Layer Meteorology , 1988 .

[123]  William P. Hooper,et al.  Lidar Measurements of Wind in the Planetary Boundary Layer: The Method, Accuracy and Results from Joint Measurements with Radiosonde and Kytoon. , 1986 .

[124]  S. H. Melfi,et al.  Lidar observations of vertically organized convection in the planetary boundary layer over the ocean , 1985 .

[125]  F. T. M. Nieuwstadt,et al.  A Rate Equation for the Nocturnal Boundary-Layer Height , 1981 .

[126]  F. Nieuwstadt The steady-state height and resistance laws of the nocturnal boundary layer: Theory compared with cabauw observations , 1981 .

[127]  A. H. Auer Urban Boundary Layer , 1981 .

[128]  J. V. Iribarne,et al.  Atmospheric Physics , 1980, Nature.

[129]  D. Lenschow,et al.  An observational study of the structure of the nocturnal boundary layer , 1979 .

[130]  Otto Zeman,et al.  Parameterization of the Dynamics of Stable Boundary Layers and Nocturnal Jets , 1979 .

[131]  Tetsuji Yamada Prediction of the Nocturnal Surface Inversion Height , 1979 .

[132]  J. Deardorff Prediction of Convective Mixed-Layer Entrainment for Realistic Capping Inversion Structure , 1979 .

[133]  J. Wyngaard,et al.  A Model Study of the Stably Stratified Planetary Boundary Layer , 1978 .

[134]  H. Tennekes,et al.  Parameterization of the Turbulent Energy Budget at the Top of the Daytime Atmospheric Boundary Layer , 1977 .

[135]  Tetsuji Yamada On the Similarity Functions A, B and C of the Planetary Boundary Layer , 1976 .

[136]  P. Russell,et al.  A comparison of atmospheric structure as observed with monostatic acoustic sounder and lidar techniques , 1974 .

[137]  J. Deardorff,et al.  Stability Functions for the Boundary-Layer Resistance Laws Based upon Observed Boundary-Layer Heights , 1974 .

[138]  H. Tennekes,et al.  A Model for the Dynamics of the Inversion Above a Convective Boundary Layer , 1973 .

[139]  D. Lilly Models of cloud-topped mixed layers under a strong inversion , 1968 .

[140]  F. G. Fernald,et al.  Laser Radar Echoes from a Stratified Clear Atmosphere , 1964, Nature.

[141]  R. Collis,et al.  Laser Radar Echoes from the Clear Atmosphere , 1964, Nature.

[142]  George C. Holzworth,et al.  ESTIMATES OF MEAN MAXIMUM MIXING DEPTHS IN THE CONTIGUOUS UNITED STATES , 1964 .

[143]  F. Ball Control of inversion height by surface heating , 1962 .