Effects of Device Aging on Microelectronics Radiation Response and Reliability

Recent work is reviewed that shows that MOS and bipolar device radiation response can change significantly with aging time after device fabrication and/or packaging. Effects include changes in radiation response due to burn-in, pre-irradiation elevated temperature stress, and/or long-term storage. These changes are attributed experimentally and theoretically to the motion and reactions of water and other hydrogen-related species. Similar hydrogen-related reactions can also affect the long-term reliability of MOS devices and integrated circuits, as illustrated in detail here for negative-bias temperature instability

[1]  Daniel M. Fleetwood,et al.  Impact of Aging on Radiation Hardness , 1997 .

[2]  R. L. Pease,et al.  Impact of passivation layers on enhanced low-dose-rate sensitivity and pre-irradiation elevated-temperature stress effects in bipolar linear ICs , 2002 .

[3]  J.E. Seiler,et al.  Characterization of enhanced low dose rate sensitivity (ELDRS) effects using Gated Lateral PNP transistor structures , 2004, IEEE Transactions on Nuclear Science.

[4]  D. Schroder,et al.  Negative bias temperature instability: Road to cross in deep submicron silicon semiconductor manufacturing , 2003 .

[5]  Brower Kinetics of H2 passivation of Pb centers at the (111) Si-SiO2 interface. , 1988, Physical review. B, Condensed matter.

[6]  peixiong zhao,et al.  Physical mechanisms of negative-bias temperature instability , 2005 .

[7]  R. Pease,et al.  Mechanisms for total dose sensitivity to preirradiation thermal stress in bipolar linear microcircuits , 1997, RADECS 97. Fourth European Conference on Radiation and its Effects on Components and Systems (Cat. No.97TH8294).

[8]  J.A. Felix,et al.  Annealing behavior of linear bipolar devices with enhanced low-dose-rate sensitivity , 2004, IEEE Transactions on Nuclear Science.

[9]  peixiong zhao,et al.  The effects of aging on MOS irradiation and annealing response , 2005, IEEE Transactions on Nuclear Science.

[10]  Daniel M. Fleetwood,et al.  Effects of hydrogen transport and reactions on microelectronics radiation response and reliability , 2002, Microelectron. Reliab..

[11]  J. Stathis Dissociation kinetics of hydrogen‐passivated (100) Si/SiO2 interface defects , 1995 .

[12]  P. S. Winokur,et al.  Total-Dose Failure Mechanisms of Integrated Circuits in Laboratory and Space Environments , 1987, IEEE Transactions on Nuclear Science.

[13]  peixiong zhao,et al.  Structure, properties, and dynamics of oxygen vacancies in amorphous SiO2. , 2002, Physical review letters.

[14]  Paul J. Lemaire,et al.  Reliability of optical fibers exposed to hydrogen: prediction of long-term loss increases , 1991 .

[15]  E. P. Gusev,et al.  Radiation-induced charge trapping in thin Al/sub 2/O/sub 3//SiO/sub x/N/sub y//Si(100) gate dielectric stacks , 2003 .

[16]  Daniel M. Fleetwood,et al.  Using laboratory X-ray and cobalt-60 irradiations to predict CMOS device response in strategic and space environments , 1988 .

[17]  Ronald D. Schrimpf,et al.  Negative bias-temperature instabilities in metal–oxide–silicon devices with SiO2 and SiOxNy/HfO2 gate dielectrics , 2004 .

[18]  H. E. Boesch,et al.  The nature of the trapped hole annealing process , 1989 .

[19]  K. Jeppson,et al.  Negative bias stress of MOS devices at high electric fields and degradation of MNOS devices , 1977 .

[20]  L. Tsetseris,et al.  Common origin for enhanced low-dose-rate sensitivity and bias temperature instability under negative bias , 2005, IEEE Transactions on Nuclear Science.

[21]  P. S. Winokur,et al.  Physical Mechanisms Contributing to Device "Rebound" , 1984, IEEE Transactions on Nuclear Science.

[22]  Radiation-induced charge trapping in thin Al2O3/SiOxNy/Si(100) gate dielectric stacks. , 2003 .

[23]  peixiong zhao,et al.  Effects of hydrogen motion on interface trap formation and annealing , 2004, IEEE Transactions on Nuclear Science.

[24]  Robert E. Stahlbush,et al.  Interface defect formation in MOSFETs by atomic hydrogen exposure , 1994 .

[25]  Roberto Menozzi,et al.  Reliability physics of compound semiconductor transistors for microwave applications , 2001, Microelectron. Reliab..

[26]  T. L. Evanosky,et al.  Temperature-humidity-bias-behavior and acceleration model for InP planar PIN photodiodes , 1996 .

[27]  P. S. Winokur,et al.  The Response of MOS Devices to Dose-Enhanced Low-Energy Radiation , 1986, IEEE Transactions on Nuclear Science.

[28]  Ronald D. Schrimpf,et al.  Dual behavior of H+ at Si–SiO2 interfaces: Mobility versus trapping , 2002 .

[29]  A. Stesmans Dissociation kinetics of hydrogen-passivated Pb defects at the (111)Si/SiO2 interface , 2000 .

[30]  Gaudenzio Meneghesso,et al.  Reliability analysis of GaN-Based LEDs for solid state illumination , 2003 .

[31]  Sokrates T. Pantelides,et al.  H 2 O and O 2 molecules in amorphous SiO 2 : Defect formation and annihilation mechanisms , 2004 .

[32]  Ronald D. Schrimpf,et al.  Aging and baking effects on the radiation hardness of MOS capacitors , 2001 .

[33]  P. V. Dressendorfer,et al.  A Reevaluation of Worst-Case Postirradiation Response for Hardened MOS Transistors , 1987, IEEE Transactions on Nuclear Science.

[34]  Daniel M. Fleetwood,et al.  Comparison of MOS capacitor and transistor postirradiation response , 1989 .

[35]  G. Salviati,et al.  The role of Mg complexes in the degradation of InGaN-based LEDs , 2004 .

[36]  Daniel M. Fleetwood,et al.  Effects of burn-in on radiation hardness , 1994 .

[37]  K. L. Brower Kinetics of H/sub 2/ passivation of P/sub b/ centers at the (111) Si-SiO/sub 2/ interface , 1988 .

[38]  B. J. Mrstik,et al.  Effects of post-stress hydrogen annealing on MOS oxides after /sup 60/Co irradiation or Fowler-Nordheim injection , 1993 .

[39]  Daniel M. Fleetwood,et al.  The role of border traps in MOS high-temperature postirradiation annealing response , 1993 .

[40]  peixiong zhao,et al.  Hydrogen Model for Negative Bias Temperature Instabilities in MOS Gate Insulators , 2006 .

[41]  Brower Kl,et al.  Kinetics of H2 passivation of Pb centers at the (111) Si-SiO2 interface. , 1988 .

[42]  Johnson,et al.  Negative-charge state of hydrogen in silicon. , 1990, Physical review. B, Condensed matter.

[43]  M. Heyns,et al.  Role of hydrogen on negative bias temperature instability in HfO2-based hole channel field-effect transistors , 2004 .

[44]  S. Bahl,et al.  Reliability investigation of InGaP/GaAs heterojunction bipolar transistors , 1996, IEEE Electron Device Letters.

[45]  D. Fleetwood,et al.  Effects of oxide traps, interface traps, and ‘‘border traps’’ on metal‐oxide‐semiconductor devices , 1993 .

[46]  Kelvin G. Lynn,et al.  KINETICS OF HYDROGEN INTERACTION WITH SIO2-SI INTERFACE TRAP CENTERS , 1994 .

[47]  Ronald D. Schrimpf,et al.  Proton-induced defect generation at the Si-SiO/sub 2/ interface , 2001 .

[48]  Muhammad Ashraful Alam,et al.  A comprehensive model of PMOS NBTI degradation , 2005, Microelectron. Reliab..

[49]  peixiong zhao,et al.  Reactions of Hydrogen with Si-SiO 2 Interfaces , 2001 .

[50]  R. A. Kushner,et al.  Total dose radiation hardness of MOS devices in hermetic ceramic packages , 1988 .

[51]  Ogawa,et al.  Generalized diffusion-reaction model for the low-field charge-buildup instability at the Si-SiO2 interface. , 1995, Physical review. B, Condensed matter.

[52]  Pantelides,et al.  Theory of hydrogen diffusion and reactions in crystalline silicon. , 1988, Physical review letters.

[53]  G. L. Hash,et al.  Thermal-stress effects and enhanced low dose rate sensitivity in linear bipolar ICs , 2000 .

[54]  Ivica Manic,et al.  Effects of burn-in stressing on post-irradiation annealing response of power VDMOSFETs , 2003, Microelectron. Reliab..

[55]  James D. Plummer,et al.  Si‐SiO2 interface trap production by low‐temperature thermal processing , 1987 .

[56]  Daniel M. Fleetwood,et al.  Effects of reliability screens on MOS charge trapping , 1995 .

[57]  peixiong zhao,et al.  Reactions of hydrogen with Si-SiO/sub 2/ interfaces , 2000 .

[58]  R. L. Pease,et al.  A proposed hardness assurance test methodology for bipolar linear circuits and devices in a space ionizing radiation environment , 1997 .

[59]  M.A. Alam,et al.  Theory of interface-trap-induced NBTI degradation for reduced cross section MOSFETs , 2006, IEEE Transactions on Electron Devices.

[60]  Patrick M. Lenahan,et al.  Hole traps and trivalent silicon centers in metal/oxide/silicon devices , 1984 .

[61]  R. L. Pease,et al.  Impact of aging on radiation hardness[CMOS SRAMs] , 1997 .

[62]  Daniel M. Fleetwood,et al.  Bulk oxide traps and border traps in metal–oxide–semiconductor capacitors , 1998 .

[63]  G. Watson,et al.  Misfit dislocation interactions observed by cathodoluminescence in InGaAs on off-cut, patterned GaAs , 2003 .

[64]  Daniel M. Fleetwood,et al.  Effects of interface traps and border traps on MOS postirradiation annealing response , 1995 .

[65]  Daniel M. Fleetwood,et al.  Total-dose radiation hardness assurance , 2003 .

[66]  J.A. Felix,et al.  Bias-temperature instabilities and radiation effects in MOS devices , 2005, IEEE Transactions on Nuclear Science.

[67]  S. Pantelides,et al.  Migration, incorporation, and passivation reactions of molecular hydrogen at the Si ‐ Si O 2 interface , 2004 .

[68]  Johnson,et al.  Diffusion of negatively charged hydrogen in silicon. , 1992, Physical review. B, Condensed matter.

[69]  R. L. Pease,et al.  Plastic packaging and burn-in effects on ionizing dose response in CMOS microcircuits , 1995 .