Strong ill-posedness of the incompressible Euler equation in borderline Sobolev spaces
暂无分享,去创建一个
[1] Akira Ogawa,et al. Vorticity and Incompressible Flow. Cambridge Texts in Applied Mathematics , 2002 .
[2] Tosio Kato,et al. The Cauchy problem for quasi-linear symmetric hyperbolic systems , 1975 .
[3] Dongho Chae,et al. Local existence and blow‐up criterion for the Euler equations in the Besov spaces , 2004 .
[4] A. Majda,et al. Vorticity and incompressible flow , 2001 .
[5] Claude Bardos,et al. Mathematical Topics in Fluid Mechanics, Volume 1, Incompressible Models , 1998 .
[6] Tosio Kato. Nonstationary flows of viscous and ideal fluids in R3 , 1972 .
[7] A. Majda,et al. Oscillations and concentrations in weak solutions of the incompressible fluid equations , 1987 .
[8] Young Ja Park,et al. Existence of Solution for the Euler Equations in a Critical Besov Space (ℝ n ) , 2004 .
[9] Edriss S. Titi,et al. Loss of smoothness and energy conserving rough weak solutions for the 3d Euler equations , 2009, 0906.2029.
[10] P. Lions. Mathematical topics in fluid mechanics , 1996 .
[11] Peter Constantin,et al. On the Euler equations of incompressible fluids , 2007 .
[12] Ryo Takada,et al. Counterexamples of Commutator Estimates in the Besov and the Triebel-Lizorkin Spaces Related to the Euler Equations , 2010, SIAM J. Math. Anal..
[13] Gebräuchliche Fertigarzneimittel,et al. V , 1893, Therapielexikon Neurologie.
[14] H. Inci. On the well-posedness of the incompressible Euler Equation , 2013, 1301.5997.
[15] W. Wolibner. Un theorème sur l'existence du mouvement plan d'un fluide parfait, homogène, incompressible, pendant un temps infiniment long , 1933 .
[16] Tosio Kato,et al. Commutator estimates and the euler and navier‐stokes equations , 1988 .
[17] R. Danchin. Axisymmetric incompressible flows with bounded vorticity , 2007 .
[18] J. Marsden,et al. Groups of diffeomorphisms and the motion of an incompressible fluid , 1970 .
[19] M. R. Ukhovskii,et al. Axially symmetric flows of ideal and viscous fluids filling the whole space , 1968 .
[20] Tosio Kato,et al. Remarks on the breakdown of smooth solutions for the 3-D Euler equations , 1984 .
[21] Jean Bourgain,et al. On an endpoint Kato-Ponce inequality , 2014, Differential and Integral Equations.
[22] Haim Brezis,et al. Remarks on the Euler equation , 1974 .
[23] T. Yanagisawa,et al. Note on global existence for axially symmetric solutions of the Euler system , 1994 .
[24] V. I. Yudovich,et al. Uniqueness Theorem for the Basic Nonstationary Problem in the Dynamics of an Ideal Incompressible Fluid , 1995 .
[25] Taoufik Hmidi,et al. On the global well-posedness for the axisymmetric Euler equations , 2008, 0801.2316.
[26] A. Alexandrou Himonas,et al. Non-Uniform Dependence on Initial Data of Solutions to the Euler Equations of Hydrodynamics , 2010 .
[27] Jean-Yves Chemin,et al. Perfect Incompressible Fluids , 1998 .
[28] G. Misiołek,et al. ILL-POSEDNESS EXAMPLES FOR THE QUASI-GEOSTROPHIC AND THE EULER EQUATIONS , 2012 .
[29] V. I. Yudovich,et al. Non-stationary flow of an ideal incompressible liquid , 1963 .
[30] L. Grafakos,et al. A remark on an endpoint Kato-Ponce inequality , 2013, Differential and Integral Equations.
[31] M. Vishik,et al. Hydrodynamics in Besov Spaces , 1998 .
[32] R. Shvydkoy,et al. ILL-POSEDNESS OF THE BASIC EQUATIONS OF FLUID DYNAMICS IN BESOV SPACES , 2009, 0904.2196.
[33] D. Chae,et al. Logarithmically regularized inviscid models in borderline sobolev spaces , 2012 .