Radiometric Cross Calibration of Landsat 8 Operational Land Imager (OLI) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+)

This study evaluates the radiometric consistency between Landsat-8 Operational Land Imager (OLI) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) using cross calibration techniques. Two approaches are used, one based on cross calibration between the two sensors using simultaneous image pairs, acquired during an underfly event on 29–30 March 2013. The other approach is based on using time series of image statistics acquired by these two sensors over the Libya 4 pseudo invariant calibration site (PICS) (+28.55°N, +23.39°E). Analyses from these approaches show that the reflectance calibration of OLI is generally within ±3% of the ETM+ radiance calibration for all the reflective bands from visible to short wave infrared regions when the ChKur solar spectrum is used to convert the ETM+ radiance to reflectance. Similar results are obtained comparing the OLI radiance calibration directly with the ETM+ radiance calibration and the results in these two different physical units (radiance and reflectance) agree to within ±2% for all the analogous bands. These results will also be useful to tie all the Landsat heritage sensors from Landsat 1 MultiSpectral Scanner (MSS) through Landsat-8 OLI to a consistent radiometric scale.

[1]  Xiaoxiong Xiong,et al.  Assessment of Spectral Band Impact on Intercalibration Over Desert Sites Using Simulation Based on EO-1 Hyperion Data , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Amit Angal,et al.  Applications of Spectral Band Adjustment Factors (SBAF) for Cross-Calibration , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Brian L. Markham,et al.  Landsat-7 ETM+ on-orbit reflective-band radiometric stability and absolute calibration , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[4]  John L. Barker,et al.  Impacts of spectral band difference effects on radiometric cross-calibration between satellite sensors in the solar-reflective spectral domain , 2007 .

[5]  P. M. Teilleta,et al.  Radiometric cross-calibration of the Landsat-7 ETM+ and Landsat-5 TM sensors based on tandem data sets , 2001 .

[6]  J. L. Barker,et al.  Radiometric cross-calibration of the Landsat-7 ETM+ and Landsat-5 TM sensors based on tandem data sets , 2001 .

[7]  Dennis L. Helder,et al.  Radiometric Calibration of the Landsat MSS Sensor Series , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[8]  D. Helder,et al.  Optimized identification of worldwide radiometric pseudo-invariant calibration sites , 2010 .

[9]  A. Wu,et al.  Assessing the consistency of AVHRR and MODIS L1B reflectance for generating Fundamental Climate Data Records , 2008 .

[10]  Brian L. Markham,et al.  Landsat-7 ETM+: 12 Years On-Orbit Reflective-Band Radiometric Performance , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Amit Angal,et al.  Absolute Calibration of Optical Satellite Sensors Using Libya 4 Pseudo Invariant Calibration Site , 2014, Remote. Sens..

[12]  G. Chander,et al.  Monitoring on-orbit calibration stability of the Terra MODIS and Landsat 7 ETM+ sensors using pseudo-invariant test sites , 2010 .

[13]  John W. Figoski,et al.  Performance results for the Landsat OLI spectral filters , 2009, Optical Engineering + Applications.

[14]  J. Irons,et al.  Requirements for a Landsat Data Continuity Mission , 2006 .

[15]  Xiangqian Wu,et al.  Overview of Intercalibration of Satellite Instruments , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Stefan Adriaensen,et al.  Optical Sensor CAlibration using simulated radiances over desert sites , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[17]  Amit Angal,et al.  Impact of Terra MODIS Collection 6 on long-term trending comparisons with Landsat 7 ETM+ reflective solar bands , 2013 .

[18]  Edward J. Knight,et al.  Landsat-8 Operational Land Imager Design, Characterization and Performance , 2014, Remote. Sens..

[19]  M. Leroy,et al.  Selection and characterization of Saharan and Arabian desert sites for the calibration of optical satellite sensors , 1996 .

[20]  Gyanesh Chander,et al.  Assessment of Spectral, Misregistration, and Spatial Uncertainties Inherent in the Cross-Calibration Study , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[21]  John Shepanski,et al.  Hyperion, a space-based imaging spectrometer , 2003, IEEE Trans. Geosci. Remote. Sens..

[22]  Xiaoxiong Xiong,et al.  Absolute Radiometric Calibration of Landsat Using a Pseudo Invariant Calibration Site , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[23]  Bertrand Fougnie,et al.  Cross Calibration Over Desert Sites: Description, Methodology, and Operational Implementation , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[24]  K. Thome Absolute radiometric calibration of Landsat 7 ETM+ using the reflectance-based method , 2001 .

[25]  Julia A. Barsi,et al.  The next Landsat satellite: The Landsat Data Continuity Mission , 2012 .

[26]  Kurtis J. Thome,et al.  Vicarious radiometric calibration of EO-1 sensors by reference to high-reflectance ground targets , 2003, IEEE Trans. Geosci. Remote. Sens..

[27]  Dave Smith,et al.  Calibration monitoring of the visible and near-infrared channels of the along-track scanning radiometer-2 by use of stable terrestrial sites. , 2002, Applied optics.

[28]  Aisheng Wu,et al.  Initial Stability Assessment of S-NPP VIIRS Reflective Solar Band Calibration Using Invariant Desert and Deep Convective Cloud Targets , 2014, Remote. Sens..

[29]  Kenton Lee,et al.  The Spectral Response of the Landsat-8 Operational Land Imager , 2014, Remote. Sens..

[30]  B. Markham,et al.  Summary of Current Radiometric Calibration Coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI Sensors , 2009 .

[31]  Lawrence Ong,et al.  Landsat-8 Operational Land Imager Radiometric Calibration and Stability , 2014, Remote. Sens..