Towards an exact description of electronic wavefunctions in real solids

The properties of all materials arise largely from the quantum mechanics of their constituent electrons under the influence of the electric field of the nuclei. The solution of the underlying many-electron Schrödinger equation is a ‘non-polynomial hard’ problem, owing to the complex interplay of kinetic energy, electron–electron repulsion and the Pauli exclusion principle. The dominant computational method for describing such systems has been density functional theory. Quantum-chemical methods—based on an explicit ansatz for the many-electron wavefunctions and, hence, potentially more accurate—have not been fully explored in the solid state owing to their computational complexity, which ranges from strongly exponential to high-order polynomial in system size. Here we report the application of an exact technique, full configuration interaction quantum Monte Carlo to a variety of real solids, providing reference many-electron energies that are used to rigorously benchmark the standard hierarchy of quantum-chemical techniques, up to the ‘gold standard’ coupled-cluster ansatz, including single, double and perturbative triple particle–hole excitation operators. We show the errors in cohesive energies predicted by this method to be small, indicating the potential of this computationally polynomial scaling technique to tackle current solid-state problems.

[1]  Weitao Yang,et al.  Challenges for density functional theory. , 2012, Chemical reviews.

[2]  Bartolomeo Civalleri,et al.  Approaching the theoretical limit in periodic local MP2 calculations with atomic-orbital basis sets: the case of LiH. , 2011, The Journal of chemical physics.

[3]  N. S. Blunt,et al.  The sign problem and population dynamics in the full configuration interaction quantum Monte Carlo method. , 2011, The Journal of chemical physics.

[4]  Christof Hättig,et al.  Explicitly correlated electrons in molecules. , 2012, Chemical reviews.

[5]  K. Doll,et al.  Approaching the bulk limit with finite cluster calculations using local increments: the case of LiH. , 2012, The Journal of chemical physics.

[6]  Jeppe Olsen,et al.  Full configuration interaction benchmarking of coupled-cluster models for the lowest singlet energy surfaces of N2 , 2000 .

[7]  J. Cizek On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods , 1966 .

[8]  Henry Krakauer,et al.  Bond breaking with auxiliary-field quantum Monte Carlo. , 2007, The Journal of chemical physics.

[9]  Ali Alavi,et al.  A Full Configuration Interaction Perspective on the Homogeneous Electron Gas , 2011, 1109.2635.

[10]  Ali Alavi,et al.  Approaching chemical accuracy using full configuration-interaction quantum Monte Carlo: a study of ionization potentials. , 2010, The Journal of chemical physics.

[11]  B. Paulus,et al.  Wavefunction-based electron correlation methods for solids. , 2012, Physical chemistry chemical physics : PCCP.

[12]  Peter J. Knowles,et al.  A new determinant-based full configuration interaction method , 1984 .

[13]  Ali Alavi,et al.  A study of electron affinities using the initiator approach to full configuration interaction quantum Monte Carlo. , 2011, The Journal of chemical physics.

[14]  Walter Kohn,et al.  Nobel Lecture: Electronic structure of matter-wave functions and density functionals , 1999 .

[15]  P. J. Bygrave,et al.  Comparison of the incremental and hierarchical methods for crystalline neon , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[16]  Henry Krakauer,et al.  Pressure-induced diamond to β-tin transition in bulk silicon: A quantum Monte Carlo study , 2009, 0908.4477.

[17]  Philippe Y. Ayala,et al.  Atomic orbital Laplace-transformed second-order Møller–Plesset theory for periodic systems , 2001 .

[18]  John A. Pople,et al.  Nobel Lecture: Quantum chemical models , 1999 .

[19]  Georg Kresse,et al.  Second-order Møller-Plesset perturbation theory applied to extended systems. II. Structural and energetic properties. , 2010, The Journal of chemical physics.

[20]  Matthias Troyer,et al.  Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations , 2004, Physical review letters.

[21]  Frederick R. Manby,et al.  A Simple, Exact Density-Functional-Theory Embedding Scheme , 2012, Journal of chemical theory and computation.

[22]  Ali Alavi,et al.  Breaking the carbon dimer: the challenges of multiple bond dissociation with full configuration interaction quantum Monte Carlo methods. , 2011, The Journal of chemical physics.

[23]  Shiwei Zhang,et al.  Finite-size correction in many-body electronic structure calculations. , 2007, Physical review letters.

[24]  George H. Booth,et al.  Natural Orbitals for Wave Function Based Correlated Calculations Using a Plane Wave Basis Set. , 2011, Journal of chemical theory and computation.

[25]  *Contributed equally to the work , 2010 .

[26]  F. Manby,et al.  Bulk and surface energetics of crystalline lithium hydride: Benchmarks from quantum Monte Carlo and quantum chemistry , 2010, 1007.3687.

[27]  Ali Alavi,et al.  Communications: Survival of the fittest: accelerating convergence in full configuration-interaction quantum Monte Carlo. , 2010, The Journal of chemical physics.

[28]  A. Ismail,et al.  A Quantum Monte Carlo Study of Lanthanum , 2013 .

[29]  S. Hirata,et al.  Communications: Explicitly correlated second-order Møller-Plesset perturbation method for extended systems. , 2010, The Journal of chemical physics.

[30]  H. G. Petersen,et al.  Error estimates on averages of correlated data , 1989 .

[31]  Jeongnim Kim,et al.  Multideterminant Wave Functions in Quantum Monte Carlo. , 2012, Journal of chemical theory and computation.

[32]  Quantum Chemical Models (Nobel Lecture) , 1999 .

[33]  Ali Alavi,et al.  Fermion Monte Carlo without fixed nodes: a game of life, death, and annihilation in Slater determinant space. , 2009, The Journal of chemical physics.

[34]  Cesare Pisani,et al.  Beyond a Hartree–Fock description of crystalline solids: the case of lithium hydride , 2007 .

[35]  Frederick R. Manby,et al.  Fast local-MP2 method with density-fitting for crystals. I. Theory and algorithms , 2007 .

[36]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[37]  J. Perdew,et al.  Assessing the performance of recent density functionals for bulk solids , 2009, 0903.4037.

[38]  S. Hirata,et al.  Logarithm second-order many-body perturbation method for extended systems. , 2010, The Journal of chemical physics.

[39]  Peter Schlattmann,et al.  Theory and Algorithms , 2009 .

[40]  J. Paier,et al.  Second-order Møller-Plesset perturbation theory applied to extended systems. I. Within the projector-augmented-wave formalism using a plane wave basis set. , 2009, The Journal of chemical physics.

[41]  R J Needs,et al.  Benchmark all-electron ab initio quantum Monte Carlo calculations for small molecules. , 2009, The Journal of chemical physics.

[42]  M. Hutchings,et al.  Measurement of Spin-Wave Dispersion in NiO by Inelastic Neutron Scattering and Its Relation to Magnetic Properties , 1972 .

[43]  R J Needs,et al.  Inhomogeneous backflow transformations in quantum Monte Carlo calculations. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  G. Kresse,et al.  Improved hybrid functional for solids: the HSEsol functional. , 2011, The Journal of chemical physics.

[45]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[46]  M. Gillan,et al.  Calculation of properties of crystalline lithium hydride using correlated wave function theory , 2009 .

[47]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.