Algorithm 759: VLUGR3: a vectorizable adaptive-grid solver for PDEs in 3D—Part II. code description

This article describes an ANSI Fortran 77 code, VLUGR3, autovectorizable on the Cray Y-MP, that is based on an adaptive-grid finite-difference method to solve time-dependent three-dimensional systems of partial differential equations.

[1]  J. G. Verwer,et al.  Analysis of local uniform grid refinement , 1992 .

[2]  Joke Blom,et al.  VLUGR3: a vectorizable adaptive grid solver for PDEs in 3D, Part I: algorithmic aspects and applications , 1994 .

[3]  E. Desturler,et al.  Nested Krylov methods and preserving the orthogonality , 1993 .

[4]  Jan G. Verwer,et al.  Algorithm 758: VLUGR2: a vectorizable adaptive-grid solver for PDEs in 2D , 1996, TOMS.

[5]  R. A. Trompert MOORKOP: an adaptive grid code for initial-boundary value problems in two space dimensions , 1992 .

[6]  Jan Verwer,et al.  Local uniform grid refinement for time-dependent partial differential equations , 1991 .

[7]  J. G. Verwer,et al.  A static-regridding method for two-dimensional parabolic partial differential equations , 1991 .

[8]  Jan Verwer,et al.  Runge-Kutta methods and local uniform grid refinement , 1990 .

[9]  J. Blom,et al.  VLUGR2: a vectorized local uniform grid refinement code for PDE's in 2D , 1993 .

[10]  Ron Trompert Local uniform grid refinement and systems of coupled partial differential equations , 1993 .

[11]  Joke Blom,et al.  Computing brine transport in porous media with an adaptive‐grid method , 1992 .

[12]  Jan G. Verwer,et al.  Analysis of the Implicit Euler Local Uniform Grid Refinement Method , 1993, SIAM J. Sci. Comput..

[13]  J. Blom,et al.  A vectorizable adaptive grid solver for PDEs in 3D , 1993 .

[14]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..