A 2uFunction representation for non-uniform type-2 fuzzy sets: Theory and design

The theoretical and computational complexities involved in non-uniform type-2 fuzzy sets (T2 FSs) are main obstacles to apply these sets to modeling high-order uncertainties. To reduce the complexities, this paper introduces a 2uFunction representation for T2 FSs. This representation captures the ideas from probability theory. By using this representation, any non-uniform T2 FS can be represented by a function of two uniform T2 FSs. In addition, any non-uniform T2 fuzzy logic system (FLS) can be indirectly designed by two uniform T2 FLSs. In particular, a 2uFunction-based trapezoid T2 FLS is designed. Then, it is applied to the problem of forecasting Mackey-Glass time series corrupted by two kinds of noise sources: (1) stationary and (2) non-stationary additive noises. Finally, the performance of the proposed FLS is compared by (1) other types of FLS: T1 FLS and uniform T2 FLS, and (2) other studies: ANFIS [54], IT2FNN-1 [54], T2SFLS [3] and Q-T2FLS [35]. Comparative results show that the proposed design has a low prediction error as well as is suitable for online applications.

[1]  I. Turksen,et al.  Genetic type-2 fuzzy classifier functions , 2008, NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society.

[2]  Robert Ivor John,et al.  Geometric Interval Type-2 Fuzzy Systems , 2005, EUSFLAT Conf..

[3]  Robert John,et al.  Tuning of Type-2 Fuzzy Systems by Simulated A nnealing to Predict Time Series , 2011 .

[4]  Lotfi A. Zadeh,et al.  The concept of a linguistic variable and its application to approximate reasoning-III , 1975, Inf. Sci..

[5]  M. E. Muller,et al.  A Note on the Generation of Random Normal Deviates , 1958 .

[6]  Jerry M. Mendel,et al.  On new quasi-type-2 fuzzy logic systems , 2008, 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence).

[7]  Antonio Rodríguez Díaz,et al.  Simulation of the bird age-structured population growth based on an interval type-2 fuzzy cellular structure , 2011, Inf. Sci..

[8]  C. Carlsson An extension principle for interactive fuzzy numbers , 2003 .

[9]  Witold Pedrycz,et al.  Type-2 Fuzzy Logic: Theory and Applications , 2007, 2007 IEEE International Conference on Granular Computing (GRC 2007).

[10]  Oscar Castillo,et al.  A review on the design and optimization of interval type-2 fuzzy controllers , 2012, Appl. Soft Comput..

[11]  Bruno O. Shubert,et al.  Random variables and stochastic processes , 1979 .

[12]  Oscar Castillo,et al.  Face Recognition With an Improved Interval Type-2 Fuzzy Logic Sugeno Integral and Modular Neural Networks , 2011, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[13]  Jerry M. Mendel,et al.  Interval type-2 fuzzy logic systems , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[14]  Qilian Liang Ad hoc wireless network traffic-self-similarity and forecasting , 2002, IEEE Commun. Lett..

[15]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[16]  Héctor Pomares,et al.  TaSe, a Taylor series-based fuzzy system model that combines interpretability and accuracy , 2005, Fuzzy Sets Syst..

[17]  Jerry M. Mendel,et al.  Interval Type-2 Fuzzy Logic Systems Made Simple , 2006, IEEE Transactions on Fuzzy Systems.

[18]  Maria Isabel Ribeiro,et al.  Gaussian Probability Density Functions: Properties and Error Characterization , 2004 .

[19]  Babak Nadjar Araabi,et al.  Predicting Chaotic Time Series Using Neural and Neurofuzzy Models: A Comparative Study , 2006, Neural Processing Letters.

[20]  Janusz T. Starczewski Efficient triangular type-2 fuzzy logic systems , 2009, Int. J. Approx. Reason..

[21]  Qilian Liang MPEG VBR video traffic classification using Bayesian and nearest neighbor classifiers , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[22]  D. Quinney An introduction to the numerical solution of differential equations , 1988 .

[23]  Jerry M. Mendel,et al.  Centroid of a type-2 fuzzy set , 2001, Inf. Sci..

[24]  Dennis L. Krepp Face Recognition With Neural Networks , 1992 .

[25]  Jafreezal Jaafar,et al.  ARIMA based Interval Type-2 Fuzzy Model for Forecasting , 2011 .

[26]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[27]  Janusz T. Starczewski A Triangular Type-2 Fuzzy Logic System , 2006, 2006 IEEE International Conference on Fuzzy Systems.

[28]  Myriam Regattieri Delgado,et al.  General type-2 fuzzy classifiers to land cover classification , 2008, SAC '08.

[29]  Jerry M. Mendel,et al.  Type-2 fuzzy sets made simple , 2002, IEEE Trans. Fuzzy Syst..

[30]  Hani Hagras,et al.  Toward General Type-2 Fuzzy Logic Systems Based on zSlices , 2010, IEEE Transactions on Fuzzy Systems.

[31]  Jia Zeng,et al.  Type-2 Fuzzy Sets for Pattern Classification: A Review , 2007, 2007 IEEE Symposium on Foundations of Computational Intelligence.

[32]  Frank Chung-Hoon Rhee,et al.  Uncertain Fuzzy Clustering: Interval Type-2 Fuzzy Approach to $C$-Means , 2007, IEEE Transactions on Fuzzy Systems.

[33]  Robert Ivor John,et al.  A Fast Geometric Method for Defuzzification of Type-2 Fuzzy Sets , 2008, IEEE Transactions on Fuzzy Systems.

[34]  Li-Xin Wang,et al.  A Course In Fuzzy Systems and Control , 1996 .

[35]  Robert Ivor John,et al.  New geometric inference techniques for type-2 fuzzy sets , 2008, Int. J. Approx. Reason..

[36]  Jerry M. Mendel,et al.  Uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems , 2002, IEEE Trans. Fuzzy Syst..

[37]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[38]  Myriam Regattieri Delgado,et al.  General Type-2 Fuzzy Inference Systems: Analysis, Design and Computational Aspects , 2007, 2007 IEEE International Fuzzy Systems Conference.

[39]  Seyyedeh Fatemeh Molaeezadeh,et al.  Type-2 fuzzy pattern matching for classifying hunger and pain cries of healthy full-term infants , 2012, The 16th CSI International Symposium on Artificial Intelligence and Signal Processing (AISP 2012).

[40]  Jerry Mendel,et al.  Type-2 Fuzzy Sets and Systems: An Overview [corrected reprint] , 2007, IEEE Computational Intelligence Magazine.

[41]  L. Glass,et al.  Oscillation and chaos in physiological control systems. , 1977, Science.

[42]  U. Mahmood,et al.  Type-2 Fuzzy Classification of Blood Pressure Parameters , 2007, 2007 3rd International Conference on Intelligent Sensors, Sensor Networks and Information.

[43]  Oscar Castillo,et al.  A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks , 2009, Inf. Sci..

[44]  Oscar Castillo,et al.  An optimization method for designing type-2 fuzzy inference systems based on the footprint of uncertainty using genetic algorithms , 2012, Expert Syst. Appl..

[45]  J. Mendel Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions , 2001 .

[46]  Robert Ivor John,et al.  Geometric Type-1 and Type-2 Fuzzy Logic Systems , 2007, IEEE Transactions on Fuzzy Systems.

[47]  Jerry M. Mendel,et al.  Applications of Type-2 Fuzzy Logic Systems to Forecasting of Time-series , 1999, Inf. Sci..

[48]  Feilong Liu,et al.  An efficient centroid type-reduction strategy for general type-2 fuzzy logic system , 2008, Inf. Sci..

[49]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[50]  Jerry M. Mendel,et al.  Type-2 fuzzy sets and systems: an overview , 2007, IEEE Computational Intelligence Magazine.

[51]  Hani Hagras,et al.  zSlices — towards bridging the gap between interval and general type-2 fuzzy logic , 2008, 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence).

[52]  Robert Ivor John,et al.  The collapsing method of defuzzification for discretised interval type-2 fuzzy sets , 2009, Inf. Sci..

[53]  Aarnout Brombacher,et al.  Probability... , 2009, Qual. Reliab. Eng. Int..

[54]  Adel Ali Al-Jumaily,et al.  Type-2 Fuzzy System Based Blood Pressure Parameters Estimation , 2008, 2008 Second Asia International Conference on Modelling & Simulation (AMS).

[55]  Francisco Herrera,et al.  A genetic tuning to improve the performance of Fuzzy Rule-Based Classification Systems with Interval-Valued Fuzzy Sets: Degree of ignorance and lateral position , 2011, Int. J. Approx. Reason..

[56]  Jia Zeng,et al.  Type-2 fuzzy Gaussian mixture models , 2008, Pattern Recognit..

[57]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[58]  S. Bertazzoni,et al.  Local meteorological forecasting by type-2 fuzzy systems time series prediction , 2005, CIMSA. 2005 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, 2005..

[59]  Arianna Mencattini,et al.  Meteorological forecasting using type-2 fuzzy logic systems , 2010 .

[60]  Jia Zeng,et al.  Type-2 fuzzy hidden Markov models and their application to speech recognition , 2006, IEEE Transactions on Fuzzy Systems.

[61]  Pilar Gómez-Gil,et al.  Type-2 Fuzzy Sets Applied to Pattern Matching for the Classification of Cries of Infants under Neurological Risk , 2009, ICIC.

[62]  Jerry M. Mendel,et al.  $\alpha$-Plane Representation for Type-2 Fuzzy Sets: Theory and Applications , 2009, IEEE Transactions on Fuzzy Systems.

[63]  Jerry M. Mendel,et al.  Advances in type-2 fuzzy sets and systems , 2007, Inf. Sci..

[64]  Jerry M. Mendel,et al.  Computing the centroid of a general type-2 fuzzy set by means of the centroid-flow algorithm , 2011, IEEE Transactions on Fuzzy Systems.

[65]  Jerry M. Mendel,et al.  Generating fuzzy rules by learning from examples , 1992, IEEE Trans. Syst. Man Cybern..

[66]  J. Mendel,et al.  α-Plane Representation for Type-2 Fuzzy Sets: Theory and Applications , 2009 .