Intracellular microlasers

Optical microresonators1 which confine light within a small cavity are widely exploited for various applications ranging from the realization of lasers2 and nonlinear devices3, 4, 5 to biochemical and optomechanical sensing6, 7, 8, 9, 10, 11. Here we employ microresonators and suitable optical gain materials inside biological cells to demonstrate various optical functions in vitro including lasing. We explored two distinct types of microresonators: soft and hard, that support whispering-gallery modes (WGM). Soft droplets formed by injecting oil or using natural lipid droplets support intracellular laser action. The laser spectra from oil-droplet microlasers can chart cytoplasmic internal stress (~500 pN/μm2) and its dynamic fluctuations at a sensitivity of 20 pN/μm2 (20 Pa). In a second form, WGMs within phagocytized polystyrene beads of different sizes enable individual tagging of thousands of cells easily and, in principle, a much larger number by multiplexing with different dyes.

[1]  S. Arnold,et al.  Whispering-gallery-mode biosensing: label-free detection down to single molecules , 2008, Nature Methods.

[2]  M. Gather,et al.  Advances in small lasers , 2014, Nature Photonics.

[3]  V. Datsyuk Some characteristics of resonant electromagnetic modes in a dielectric sphere , 1992 .

[4]  S. Gambhir,et al.  Single-cell photonic nanocavity probes , 2013, CLEO: 2013.

[5]  Yong-hee Lee,et al.  A terahertz metamaterial with unnaturally high refractive index , 2011, Nature.

[6]  T. Kippenberg,et al.  Microresonator based optical frequency combs , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[7]  Roger Y. Tsien,et al.  Creating new fluorescent probes for cell biology , 2003, Nature Reviews Molecular Cell Biology.

[8]  R. Chang,et al.  Lasing Droplets: Highlighting the Liquid-Air Interface by Laser Emission , 1986, Science.

[9]  M.L. Gorodetsky,et al.  Geometrical theory of whispering-gallery modes , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[10]  K. Vahala Optical microcavities , 2003, Nature.

[11]  K. Vahala,et al.  Ultralow-threshold Raman laser using a spherical dielectric microcavity , 2002, Nature.

[12]  G. J. Cannon,et al.  The macrophage capacity for phagocytosis. , 1992, Journal of cell science.

[13]  M. Smit,et al.  A fast low-power optical memory based on coupled micro-ring lasers , 2004, Nature.

[14]  Michael Himmelhaus,et al.  In-vitro sensing of biomechanical forces in live cells by a whispering gallery mode biosensor. , 2009, Biosensors & bioelectronics.

[15]  Malte C. Gather,et al.  Single-cell biological lasers , 2011 .

[16]  Seok Hyun Yun,et al.  All‐Biomaterial Laser Using Vitamin and Biopolymers , 2013, Advanced materials.

[17]  Xudong Fan,et al.  Optofluidic Microsystems for Chemical and Biological Analysis. , 2011, Nature photonics.

[18]  Alper Kiraz,et al.  In vitro and in vivo biolasing of fluorescent proteins suspended in liquid microdroplet cavities. , 2014, Lab on a chip.

[19]  Long-chuan Yu,et al.  Microinjection as a tool of mechanical delivery. , 2008, Current opinion in biotechnology.

[20]  R. W. Draft,et al.  Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system , 2007, Nature.

[21]  I. Louveau,et al.  Lipid metabolism and secretory function of porcine intramuscular adipocytes compared with subcutaneous and perirenal adipocytes. , 2006, American journal of physiology. Endocrinology and metabolism.

[22]  Gabriel Popescu,et al.  Live cell refractometry using Hilbert phase microscopy and confocal reflectance microscopy. , 2009, The journal of physical chemistry. A.

[23]  Matthew R Foreman,et al.  Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform. , 2014, Nature nanotechnology.

[24]  Federico Capasso,et al.  Whispering-gallery mode resonators for highly unidirectional laser action , 2010, Proceedings of the National Academy of Sciences.

[25]  Donald E Ingber,et al.  Quantifying cell-generated mechanical forces within living embryonic tissues , 2013, Nature Methods.

[26]  N. Simmons,et al.  Role of passive potassium fluxes in cell volume regulation in cultured HeLa cells , 2005, The Journal of Membrane Biology.

[27]  Axel Scherer,et al.  Visible submicron microdisk lasers , 2007 .

[28]  Lan Yang,et al.  On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh- Q microresonator , 2010 .

[29]  Y. Hiraoka,et al.  Artificial induction of autophagy around polystyrene beads in nonphagocytic cells , 2010, Autophagy.

[30]  S. Schultz,et al.  Molecular Biology of Membrane Transport Disorders , 1996, Springer US.

[31]  Xudong Fan,et al.  The potential of optofluidic biolasers , 2014, Nature Methods.

[32]  Rajan P Kulkarni,et al.  Label-Free, Single-Molecule Detection with Optical Microcavities , 2007, Science.