A 7-Channel High-${T}_\text{c}$ SQUID-Based On-Scalp MEG System

<italic>Objective:</italic> To present the technical design and demonstrate the feasibility of a multi-channel on-scalp magnetoencephalography (MEG) system based on high critical temperature (high-<inline-formula><tex-math notation="LaTeX">${T}_\text{c}$</tex-math></inline-formula>) superconducting quantum interference devices (SQUIDs). <italic>Methods:</italic> We built a liquid nitrogen-cooled cryostat that houses seven YBCO SQUID magnetometers arranged in a dense, head-aligned array with minimal distance to the room-temperature environment for all sensors. We characterize the performance of this 7-channel system in terms of on-scalp MEG utilization and present recordings of spontaneous and evoked brain activity. <italic>Results:</italic> The center-to-center spacing between adjacent SQUIDs is 12.0 and 13.4 mm and all SQUIDs are in the range of 1-3 mm of the head surface. The cryostat reaches a base temperature of <inline-formula><tex-math notation="LaTeX">$\sim$</tex-math></inline-formula>70 K and stays cold for <inline-formula><tex-math notation="LaTeX">$>$</tex-math></inline-formula>16 h with a single 0.9 L filling. The white noise levels of the magnetometers is 50–130 fT/Hz<sup>1/2</sup> at 10 Hz and they show low sensor-to-sensor feedback flux crosstalk (<inline-formula><tex-math notation="LaTeX">$< $</tex-math></inline-formula>0.6%). We demonstrate evoked fields from auditory stimuli and single-shot sensitivity to alpha modulation from the visual cortex. <italic>Conclusion:</italic> All seven channels in the system sensitively sample neuromagnetic fields with mm-scale scalp standoff distances. The hold time of the cryostat furthermore is sufficient for a day of recordings. As such, our multi-channel high-<inline-formula><tex-math notation="LaTeX">${T}_\text{c}$</tex-math></inline-formula> SQUID-based system meets the demands of on-scalp MEG. <italic>Significance:</italic> The system presented here marks the first high-<inline-formula><tex-math notation="LaTeX">${T}_\text{c}$</tex-math></inline-formula> SQUID-based on-scalp MEG system with more than two channels. It enables us to further explore the benefits of on-scalp MEG in future recordings.

[1]  Robert Oostenveld,et al.  FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data , 2010, Comput. Intell. Neurosci..

[2]  Dietmar Drung,et al.  High-Tc and low-Tc dc SQUID electronics , 2003 .

[3]  Kevin Pratt,et al.  BabyMEG: A whole-head pediatric magnetoencephalography system for human brain development research. , 2016, The Review of scientific instruments.

[4]  T. R. Carter,et al.  A 20-channel magnetoencephalography system based on optically pumped magnetometers. , 2017, Physics in medicine and biology.

[5]  H. Jasper,et al.  The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. , 1999, Electroencephalography and clinical neurophysiology. Supplement.

[6]  J. C. Macfarlane,et al.  Noise performance of HTS solid and meshed dc SQUID magnetometers in external magnetic fields , 2004 .

[7]  Robert Oostenveld,et al.  Benchmarking for On-Scalp MEG Sensors , 2017, IEEE Transactions on Biomedical Engineering.

[8]  J. Dammers,et al.  Source localization of brain activity using helium-free interferometer , 2014 .

[9]  Riitta Salmelin,et al.  Magnetoencephalography: From SQUIDs to neuroscience Neuroimage 20th Anniversary Special Edition , 2012, NeuroImage.

[10]  Matti Stenroos,et al.  Measuring MEG closer to the brain: Performance of on-scalp sensor arrays , 2016, NeuroImage.

[11]  S. Taulu,et al.  Suppression of Interference and Artifacts by the Signal Space Separation Method , 2003, Brain Topography.

[12]  Justin F. Schneiderman,et al.  Information content with low- vs. high-T c SQUID arrays in MEG recordings: The case for high-T c SQUID-based MEG , 2014, Journal of Neuroscience Methods.

[13]  Heidi E Kirsch,et al.  American Clinical Magnetoencephalography Society Clinical Practice Guideline 2: Presurgical Functional Brain Mapping Using Magnetic Evoked Fields* , 2011, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[14]  L. Trahms,et al.  Magnetoencephalography with a chip-scale atomic magnetometer , 2012, Biomedical optics express.

[15]  Lauri Parkkonen,et al.  On-scalp MEG system utilizing an actively shielded array of optically-pumped magnetometers , 2018, NeuroImage.

[16]  W. Klimesch,et al.  Theta synchronization and alpha desynchronization in a memory task. , 1997, Psychophysiology.

[17]  M. Elam,et al.  High-T-c superconducting quantum interference device recordings of spontaneous brain activity: Towards high-T-c magnetoencephalography , 2012 .

[18]  T. Picton,et al.  The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. , 1987, Psychophysiology.

[19]  Dag Winkler,et al.  A new approach for bioassays based on frequency- and time-domain measurements of magnetic nanoparticles. , 2010, Biosensors & bioelectronics.

[20]  Niall Holmes,et al.  Moving magnetoencephalography towards real-world applications with a wearable system , 2018, Nature.

[21]  Christoph Pfeiffer,et al.  Evaluation of realistic layouts for next generation on-scalp MEG: spatial information density maps , 2017, Scientific Reports.

[22]  Sylvain Baillet,et al.  Magnetoencephalography for brain electrophysiology and imaging , 2017, Nature Neuroscience.

[23]  C. Ciulla,et al.  MEG Characterization of Spontaneous Alpha Rhythm in the Human Brain , 2004, Brain Topography.

[24]  Matthew J. Brookes,et al.  A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers , 2017, NeuroImage.

[25]  A. Puce,et al.  IFCN-endorsed practical guidelines for clinical magnetoencephalography (MEG) , 2018, Clinical Neurophysiology.

[26]  Robert Oostenveld,et al.  Similarities and differences between on-scalp and conventional in-helmet magnetoencephalography recordings , 2017, PloS one.

[27]  D. Cohen Magnetoencephalography: Evidence of Magnetic Fields Produced by Alpha-Rhythm Currents , 1968, Science.

[28]  John S Ebersole,et al.  American Clinical Magnetoencephalography Society Clinical Practice Guideline 1: Recording and Analysis of Spontaneous Cerebral Activity* , 2011, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[29]  J. Schneiderman,et al.  Feedback solutions for low crosstalk in dense arrays of high-Tc SQUIDs for on-scalp MEG , 2017 .

[30]  Luke Bloy,et al.  Artemis 123: development of a whole-head infant and young child MEG system , 2014, Front. Hum. Neurosci..

[31]  J. Osborne,et al.  Fully integrated standalone zero field optically pumped magnetometer for biomagnetism , 2018, OPTO.

[32]  C. Pantev,et al.  Magnetoencephalography using high temperature rf SQUIDs , 2005, Brain Topography.