Optimized Temperature Effect of Li‐Ion Diffusion with Layer Distance in Li(NixMnyCoz)O2 Cathode Materials for High Performance Li‐Ion Battery

Understanding and optimizing the temperature effects of Li-ion diffusion by analyzing crystal structures of layered Li(NixMnyCoz)O2 (NMC) (x + y + z = 1) materials is important to develop advanced rechargeable Li-ion batteries (LIBs) for multi-temperature applications with high power density. Combined with experiments and ab initio calculations, the layer distances and kinetics of Li-ion diffusion of LiNixMnyCozO2 (NMC) materials in different states of Li-ion de-intercalation and temperatures are investigated systematically. An improved model is also developed to reduce the system error of the “Galvanostatic Intermittent Titration Technique” with a correction of NMC particle size distribution. The Li-ion diffusion coefficients of all the NMC materials are measured from −25 to 50 °C. It is found that the Li-ion diffusion coefficient of LiNi0.6Mn0.2Co0.2O2 is the largest with the minimum temperature effect. Ab initio calculations and XRD measurements indicate that the larger Li slab space benefits to Li-ion diffusion with minimum temperature effect in layered NMC materials.

[1]  Matsuhiko Nishizawa,et al.  Kinetic Characterization of Single Particles of LiCoO2 by AC Impedance and Potential Step Methods , 2001 .

[2]  Robert A. Huggins,et al.  Thermodynamic and Mass Transport Properties of “ LiAl ” , 1979 .

[3]  M. Whittingham,et al.  Towards understanding the rate capability of layered transition metal oxides LiNiyMnyCo1−2yO2 , 2014 .

[4]  Mark Asta,et al.  Computational and Experimental Investigation of Ti Substitution in Li1(NixMnxCo1-2x-yTiy)O2 for Lithium Ion Batteries. , 2014, The journal of physical chemistry letters.

[5]  Gerbrand Ceder,et al.  NMR, PDF and RMC study of the positive electrode material Li(Ni0.5Mn0.5)O2 synthesized by ion-exchange methods , 2007 .

[6]  R. Huggins,et al.  Determination of the Kinetic Parameters of Mixed‐Conducting Electrodes and Application to the System Li3Sb , 1977 .

[7]  Gerbrand Ceder,et al.  Ordering in Lix(Ni0.5Mn0.5)O2 and its relation to charge capacity and electrochemical behavior in rechargeable lithium batteries , 2004 .

[8]  G. Henkelman,et al.  Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points , 2000 .

[9]  Ping Yu,et al.  Determination of the Lithium Ion Diffusion Coefficient in Graphite , 1999 .

[10]  K. Amine,et al.  Kinetics Tuning of Li-Ion Diffusion in Layered Li(NixMnyCoz)O2. , 2015, Journal of the American Chemical Society.

[11]  Xiaogang Han,et al.  Depolarized and fully active cathode based on Li(Ni0.5Co0.2Mn0.3)O2 embedded in carbon nanotube network for advanced batteries. , 2014, Nano letters.

[12]  J. Duh,et al.  Microstructure and electrochemical performance of LiNi0.6Co0.4−xMnxO2 cathode materials , 2005 .

[13]  Chao-Yang Wang,et al.  Least Squares Galvanostatic Intermittent Titration Technique (LS-GITT) for Accurate Solid Phase Diffusivity Measurement , 2013 .

[14]  Haoshen Zhou,et al.  Study of the lithium/nickel ions exchange in the layered LiNi0.42Mn0.42Co0.16O2 cathode material for lithium ion batteries: experimental and first-principles calculations , 2014 .

[15]  Ann Marie Sastry,et al.  A review of conduction phenomena in Li-ion batteries , 2010 .

[16]  Jie Xiao,et al.  Layered Mixed Transition Metal Oxide Cathodes with Reduced Cobalt Content for Lithium Ion Batteries , 2008 .

[17]  Richard S. Nicholson,et al.  Theory and Application of Cyclic Voltammetry for Measurement of Electrode Reaction Kinetics. , 1965 .

[18]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[19]  M. Armand,et al.  Building better batteries , 2008, Nature.

[20]  Ki-Soo Lee,et al.  Structural and Electrochemical Properties of Layered Li [ Ni1 − 2x Co x Mn x ] O2 ( x = 0.1 – 0.3 ) Positive Electrode Materials for Li-Ion Batteries , 2007 .

[21]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[22]  Ying Shirley Meng,et al.  Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries , 2006, Science.

[23]  G. Suresh,et al.  Synthesis of LiNi1/3Mn1/3Co1/3O2 Cathode Material and its Electrochemical Characterization in an Aqueous Electrolyte , 2012 .

[24]  Chong Seung Yoon,et al.  Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries , 2013 .

[25]  John T. Vaughey,et al.  Li{sub2}MnO{sub3}-stabilized LiMO{sub2} (M=Mn, Ni, Co) electrodes for high energy lithium-ion batteries , 2007 .

[26]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[27]  M. Whittingham,et al.  Structural and electrochemical behavior of LiMn0.4Ni0.4Co0.2O2 , 2007 .

[28]  Minoru Inaba,et al.  A.c. impedance analysis of electrochemical lithium intercalation into highly oriented pyrolytic graphite , 1997 .

[29]  Anton Van der Ven,et al.  Lithium Diffusion in Layered Li x CoO2 , 1999 .

[30]  B. V. R. Chowdari,et al.  Influence of Li-Ion Kinetics in the Cathodic Performance of Layered Li ( Ni1 / 3Co1 / 3Mn1 / 3 ) O 2 , 2004 .

[31]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[32]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[33]  Robert A. Huggins,et al.  Application of A-C Techniques to the Study of Lithium Diffusion in Tungsten Trioxide Thin Films , 1980 .

[34]  Gerbrand Ceder,et al.  A Combined Computational/Experimental Study on LiNi1/3Co1/3Mn1/3O2 , 2003 .

[35]  Doron Aurbach,et al.  Solid‐State Electrochemical Kinetics of Li‐Ion Intercalation into Li1 − x CoO2: Simultaneous Application of Electroanalytical Techniques SSCV, PITT, and EIS , 1999 .

[36]  Xuejie Huang,et al.  Research on Advanced Materials for Li‐ion Batteries , 2009 .

[37]  K. Amine,et al.  Prelithiation Activates Li(Ni0.5Mn0.3Co0.2)O2 for High Capacity and Excellent Cycling Stability. , 2015, Nano letters.

[38]  Jeong-Hee Choi,et al.  Low temperature performance of graphite and LiNi0.6Co0.2Mn0.2O2 electrodes in Li-ion batteries , 2014, Journal of Materials Science.

[39]  Zhixing Wang,et al.  Preparation and electrochemical properties of submicron LiNi0.6Co0.2Mn0.2O2 as cathode material for lithium ion batteries , 2011 .

[40]  A. Mauger,et al.  Diffusion of Li+ Ions in LiNi1/3Mn1/3Co1/3O2 , 2011 .

[41]  Peter Y. Zavalij,et al.  The synthesis, characterization and electrochemical behavior of the layered LiNi0.4Mn0.4Co0.2O2 compound , 2004 .

[42]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[43]  Chunsheng Wang,et al.  Galvanostatic Intermittent Titration Technique for Phase-Transformation Electrodes , 2010 .

[44]  H. Shu,et al.  Determination of the chemical diffusion coefficient of lithium ions in spherical Li[Ni0.5Mn0.3Co0.2]O2 , 2012 .

[45]  Heon-Cheol Shin,et al.  The kinetics of lithium transport through Li1-δCoO2 thin film electrode by theoretical analysis of current transient and cyclic voltammogram , 2001 .

[46]  Zhigang Wu,et al.  More accurate generalized gradient approximation for solids , 2005, cond-mat/0508004.