Multigrid methods for Hdiv-conforming discontinuous Galerkin methods for the Stokes equations

Abstract A multigrid method for the Stokes system discretized with an Hdiv-conforming discontinuous Galerkin method is presented. It acts on the combined velocity and pressure spaces and thus does not need a Schur complement approximation. The smoothers used are of overlapping Schwarz type and employ a local Helmholtz decomposition. Additionally, we use the fact that the discretization provides nested divergence free subspaces. We present the convergence analysis and numerical evidence that convergence rates are not only independent of mesh size, but also reasonably small.

[1]  Guido Kanschat,et al.  A locally conservative LDG method for the incompressible Navier-Stokes equations , 2004, Math. Comput..

[2]  G. Kanschat Divergence‐free discontinuous Galerkin schemes for the Stokes equations and the MAC scheme , 2008 .

[3]  Guido Kanschat,et al.  Multilevel methods for discontinuous Galerkin FEM on locally refined meshes , 2004 .

[4]  Guido Kanschat,et al.  Adaptive Multilevel Methods with Local Smoothing for H1- and Hcurl-Conforming High Order Finite Element Methods , 2011, SIAM J. Sci. Comput..

[5]  Michael Neilan,et al.  Conforming and divergence-free Stokes elements on general triangular meshes , 2013, Math. Comput..

[6]  Shangyou Zhang,et al.  A Family of Qk+1, k˟Qk, k+1 Divergence-Free Finite Elements on Rectangular Grids , 2009, SIAM J. Numer. Anal..

[7]  Stefan Turek An Efficient Solution Technique for the Radiative Transfer Equation , 1993, IMPACT Comput. Sci. Eng..

[8]  Guido Kanschat,et al.  A Note on Discontinuous Galerkin Divergence-free Solutions of the Navier–Stokes Equations , 2007, J. Sci. Comput..

[9]  Kanschat Guido Block Preconditioners for LDG Discretizations of Linear Incompressible Flow Problems , 2005 .

[10]  S. Vanka Block-implicit multigrid solution of Navier-Stokes equations in primitive variables , 1986 .

[11]  GUIDO KANSCHAT,et al.  Divergence-Conforming Discontinuous Galerkin Methods and C0 Interior Penalty Methods , 2014, SIAM J. Numer. Anal..

[12]  Béatrice Rivière,et al.  A strongly conservative finite element method for the coupling of Stokes and Darcy flow , 2010, J. Comput. Phys..

[13]  Joachim Schöberl,et al.  Multigrid methods for a parameter dependent problem in primal variables , 1999, Numerische Mathematik.

[14]  Shangyou Zhang A family of 3D continuously differentiable finite elements on tetrahedral grids , 2009 .

[15]  R. S. Falk,et al.  PRECONDITIONING IN H (div) AND APPLICATIONS , 1997 .

[16]  Stefan Turek,et al.  Numerical Studies of Vanka-Type Smoothers in Computational Solid Mechanics , 2009 .

[17]  D. Arnold,et al.  Finite element exterior calculus: From hodge theory to numerical stability , 2009, 0906.4325.

[18]  R. Hiptmair Multigrid Method for Maxwell's Equations , 1998 .

[19]  W. Bangerth,et al.  deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.

[20]  Luca Heltai,et al.  The deal.II Library, Version 8.1 , 2013, ArXiv.

[21]  Andrew J. Wathen,et al.  Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations , 2002, Numerische Mathematik.

[22]  Andrew J. Wathen,et al.  A Preconditioner for the Steady-State Navier-Stokes Equations , 2002, SIAM J. Sci. Comput..

[23]  Guido Kanschat,et al.  Local Discontinuous Galerkin Methods for the Stokes System , 2002, SIAM J. Numer. Anal..

[24]  Z Eth Preface Special issue on Adaptive and Multilevel Methods in Computational Electromagnetics , 2009 .

[25]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[26]  Bernardo Cockburn,et al.  Local Discontinuous Galerkin Methods for the Stokes System , 2002, SIAM J. Numer. Anal..

[27]  Guido Kanschat Block Preconditioners for LDG Discretizations of Linear Incompressible Flow Problems , 2005, J. Sci. Comput..

[28]  Richard S. Falk,et al.  Stokes Complexes and the Construction of Stable Finite Elements with Pointwise Mass Conservation , 2013, SIAM J. Numer. Anal..

[29]  P. Hansbo,et al.  CHALMERS FINITE ELEMENT CENTER Preprint 2000-06 Discontinuous Galerkin Methods for Incompressible and Nearly Incompressible Elasticity by Nitsche ’ s Method , 2007 .

[30]  Douglas N. Arnold,et al.  Multigrid in H (div) and H (curl) , 2000, Numerische Mathematik.

[31]  Joachim Schöberl,et al.  Robust Multigrid Preconditioning for Parameter-Dependent Problems I: The Stokes-Type Case , 1998 .

[32]  Joachim Schöberl,et al.  On Schwarz-type Smoothers for Saddle Point Problems , 2003, Numerische Mathematik.

[33]  Blanca Ayuso de Dios,et al.  A Simple Preconditioner for a Discontinuous Galerkin Method for the Stokes Problem , 2012, Journal of Scientific Computing.

[34]  Michael Vogelius,et al.  A right-inverse for the divergence operator in spaces of piecewise polynomials , 1983 .

[35]  Susanne C. Brenner,et al.  Multigrid methods for parameter dependent problems , 1996 .

[36]  Gene H. Golub,et al.  A Note on Preconditioning for Indefinite Linear Systems , 1999, SIAM J. Sci. Comput..

[37]  L. R. Scott,et al.  Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials , 1985 .

[38]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[39]  Guido Kanschat,et al.  Energy norm a posteriori error estimation for divergence‐free discontinuous Galerkin approximations of the Navier–Stokes equations , 2008 .

[40]  W. Hackbusch,et al.  A New Convergence Proof for the Multigrid Method Including the V-Cycle , 1983 .