Anticipating synchronization of chaotic Lur'e systems.

In this paper we consider the anticipating synchronization of chaotic time-delayed Lur'e-type systems in a master-slave setting. We introduce three scenarios for anticipating synchronization, and give sufficient conditions for the existence of anticipating synchronizing slave systems in terms of linear matrix inequalities. The results obtained are illustrated on a time-delayed Rossler system and a time-delayed Chua oscillator.

[1]  M. Mahmoud Robust Control and Filtering for Time-Delay Systems , 2000 .

[2]  Kestutis Pyragas SYNCHRONIZATION OF COUPLED TIME-DELAY SYSTEMS : ANALYTICAL ESTIMATIONS , 1998 .

[3]  Jinde Cao,et al.  Synchronization criteria of Lur’e systems with time-delay feedback control , 2005 .

[4]  Chris Arney Sync: The Emerging Science of Spontaneous Order , 2007 .

[5]  Henk Nijmeijer,et al.  A dynamical control view on synchronization , 2001 .

[6]  C. Masoller Anticipation in the synchronization of chaotic semiconductor lasers with optical feedback. , 2001, Physical review letters.

[7]  Jürgen Kurths,et al.  Synchronization: Phase locking and frequency entrainment , 2001 .

[8]  Daniel W. C. Ho,et al.  Synchronization Criteria for Lur'e Systems by Dynamic Output Feedback with Time-Delay , 2006, Int. J. Bifurc. Chaos.

[9]  S. G. Hutton,et al.  Nonlinear natural responses of a rotating circular string , 1993, Nonlinear Dynamics.

[10]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[11]  Chi-Tsong Chen,et al.  Linear System Theory and Design , 1995 .

[12]  E. M. Shahverdiev,et al.  Experimental demonstration of anticipating synchronization in chaotic semiconductor lasers with optical feedback. , 2001, Physical review letters.

[13]  J Kurths,et al.  Phase synchronization in time-delay systems. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Henk Nijmeijer,et al.  Prediction of chaotic behavior , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[15]  Shengyuan Xu,et al.  Improved delay-dependent stability criteria for time-delay systems , 2005, IEEE Transactions on Automatic Control.

[16]  M. Lakshmanan,et al.  Transition from anticipatory to lag synchronization via complete synchronization in time-delay systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[18]  Voss,et al.  Anticipating chaotic synchronization , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  Steven H. Strogatz,et al.  Sync: The Emerging Science of Spontaneous Order , 2003 .

[20]  Xiaofan Wang,et al.  Generating chaos in Chua's circuit via time-delay feedback , 2001 .

[21]  Johan A. K. Suykens,et al.  Master-Slave Synchronization of Lur'e Systems with Time-Delay , 2001, Int. J. Bifurc. Chaos.

[22]  S. Boccaletti,et al.  Synchronization of chaotic systems , 2001 .

[23]  Henk Nijmeijer,et al.  ANTICIPATING SYNCHRONIZATION OF NONLINEAR SYSTEMS WITH UNCERTAINTIES , 2006 .

[24]  Jack K. Hale,et al.  Introduction to Functional Differential Equations , 1993, Applied Mathematical Sciences.

[25]  Henning U. Voss,et al.  Real-Time Anticipation of Chaotic States of an Electronic Circuit , 2002, Int. J. Bifurc. Chaos.