Asymptotic bias of some election methods
暂无分享,去创建一个
[1] Norbert Gaffke,et al. Divisor methods for proportional representation systems: An optimization approach to vector and matrix apportionment problems , 2008, Math. Soc. Sci..
[2] Udo Schwingenschlögl. Seat biases of apportionment methods under general distributional assumptions , 2008, Appl. Math. Lett..
[3] Pukelsheim Friedrich,et al. On stationary multiplier methods for the rounding of probabilities and the limiting law of the Sainte-Laguë divergence , 2005 .
[4] Norman R. Draper,et al. Seat biases of apportionment methods for proportional representation , 2003 .
[5] Victor D'Hondt. Système pratique et raisonné de représentation proportionnelle , 1882 .
[6] Goodness-of-fit Criteria for the Adams and Jefferson Rounding Methods and their Limiting Laws , 2006 .
[7] H. Weyl. Über die Gleichverteilung von Zahlen mod. Eins , 1916 .
[8] Pukelsheim Friedrich,et al. Sainte-Laguë’s chi-square divergence for the rounding of probabilities and its convergence to a stable law , 2004 .
[9] A. Gut. Probability: A Graduate Course , 2005 .
[10] E. V. Huntington. The apportionment of representatives in Congress , 1928 .
[11] A. Sainte-Laguë,et al. La représentation proportionnelle et la méthode des moindres carrés , 1910 .
[12] F. Pukelsheim,et al. List Apparentements in Local Elections: A Lottery , 2013 .
[13] Andrew McLaren Carstairs,et al. A Short History of Electoral Systems in Western Europe , 1980 .
[14] L. Grafakos. Classical and modern Fourier analysis , 2003 .
[15] J. Ishiyama,et al. Electoral Systems , 2011 .
[16] R. Bass,et al. Review: P. Billingsley, Convergence of probability measures , 1971 .
[17] Geoffrey R. Grimmett. European apportionment via the Cambridge Compromise , 2012, Math. Soc. Sci..
[18] Alice C. Niemeyer,et al. Apportionment methods , 2015, Math. Soc. Sci..