Computing systems of Hecke eigenvalues associated to Hilbert modular forms
暂无分享,去创建一个
[1] Markus Kirschmer,et al. Algorithmic Enumeration of Ideal Classes for Quaternion Orders , 2008, SIAM J. Comput..
[2] Lassina Dembélé,et al. Quaternionic Manin symbols, Brandt matrices, and Hilbert modular forms , 2006, Math. Comput..
[3] Y. Flicker. Automorphic forms on (2) , 2004 .
[4] John Voight,et al. Identifying the Matrix Ring: Algorithms for Quaternion Algebras and Quadratic Forms , 2010, 1004.0994.
[5] G. Shimura. The special values of the zeta functions associated with Hilbert modular forms , 1978 .
[6] John Cremona,et al. Finding All Elliptic Curves with Good Reduction Outside a Given Set of Primes , 2007, Exp. Math..
[7] Henri Darmon,et al. Integration on Hp × H and arithmetic applications , 2001 .
[8] G. Shimura. The special values of the zeta functions associated with Hilbert modular forms: Duke Mathematical Journal, 45 (1978), 637–679 , 2003 .
[9] A. Wiles,et al. Residually reducible representations and modular forms , 1999 .
[10] John Voight,et al. Shimura curves of genus at most two , 2008, Math. Comput..
[11] William Stein,et al. Modular forms, a computational approach , 2007 .
[12] R. Langlands,et al. Automorphic Forms on GL(2) , 1970 .
[13] F. Jarvis. On Galois representations associated to Hilbert modular forms. , 1997 .
[14] J. Voight. Shimura curve computations , 2006 .
[15] H. Darmon,et al. Elliptic units for real quadratic fields , 2006 .
[16] Henri Darmon,et al. Efficient calculation of Stark-Heegner points via overconvergent modular symbols , 2006 .
[17] M. Sch. On the Modularity of Three Calabi-Yau Threefolds With Bad Reduction at 11 , 2006 .
[18] Matthew Greenberg. STARK-HEEGNER POINTS AND THE COHOMOLOGY OF QUATERNIONIC SHIMURA VARIETIES , 2009 .
[19] William A. Stein,et al. A Database of Elliptic Curves - First Report , 2002, ANTS.
[20] G. Shimura,et al. On the Cohomology Groups Attached to Certain Vector Valued Differential Forms on the Product of the Upper Half Planes , 1963 .
[21] Lassina Dembélé,et al. Computing Hilbert Modular Forms over Fields with Nontrivial Class Group , 2007, ANTS.
[22] Henri Darmon. Integration on ℋ p × ℋ and Arithmetic Applications , 2001 .
[23] Ju. Manin,et al. PARABOLIC POINTS AND ZETA-FUNCTIONS OF MODULAR CURVES , 1972 .
[24] H. Hida. p-Adic Automorphic Forms on Shimura Varieties , 2004 .
[25] J. Cremona. Algorithms for Modular Elliptic Curves , 1992 .
[26] M. Eichler. Grenzkreisgruppen und kettenbruchartige Algorithmen , 1965 .
[27] G. Shimura. Construction of Class Fields and Zeta Functions of Algebraic Curves , 1967 .
[28] E. Freitag. Hilbert Modular Forms , 1990 .
[29] Ariel Pacetti,et al. Proving modularity for a given elliptic curve over an imaginary quadratic field , 2008, Math. Comput..
[30] J. Voight. Computing fundamental domains for Fuchsian groups , 2008, 0802.0196.
[31] 志村 五郎,et al. Introduction to the arithmetic theory of automorphic functions , 1971 .
[32] H. Carayol. Sur la mauvaise réduction des courbes de Shimura , 1986 .
[33] A. Atkin,et al. Modular Forms , 2017 .
[34] H. Hida. On Abelian Varieties with Complex Multiplication as Factors of the Jacobians of Shimura Curves , 1981 .
[35] M. Wodzicki. Lecture Notes in Math , 1984 .
[36] John J. Cannon,et al. The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..
[37] John Cremona,et al. The Elliptic Curve Database for Conductors to 130000 , 2006, ANTS.
[38] J. Cremona. Hyperbolic tessellations, modular symbols, and elliptic curves over complex quadratic fields , 1984 .
[39] P. Deligne. Travaux de Shimura , 1971 .