Computing systems of Hecke eigenvalues associated to Hilbert modular forms

We utilize effective algorithms for computing in the cohomology of a Shimura curve together with the Jacquet-Langlands correspondence to compute systems of Hecke eigenvalues associated to Hilbert modular forms over a totally real field F.

[1]  Markus Kirschmer,et al.  Algorithmic Enumeration of Ideal Classes for Quaternion Orders , 2008, SIAM J. Comput..

[2]  Lassina Dembélé,et al.  Quaternionic Manin symbols, Brandt matrices, and Hilbert modular forms , 2006, Math. Comput..

[3]  Y. Flicker Automorphic forms on (2) , 2004 .

[4]  John Voight,et al.  Identifying the Matrix Ring: Algorithms for Quaternion Algebras and Quadratic Forms , 2010, 1004.0994.

[5]  G. Shimura The special values of the zeta functions associated with Hilbert modular forms , 1978 .

[6]  John Cremona,et al.  Finding All Elliptic Curves with Good Reduction Outside a Given Set of Primes , 2007, Exp. Math..

[7]  Henri Darmon,et al.  Integration on Hp × H and arithmetic applications , 2001 .

[8]  G. Shimura The special values of the zeta functions associated with Hilbert modular forms: Duke Mathematical Journal, 45 (1978), 637–679 , 2003 .

[9]  A. Wiles,et al.  Residually reducible representations and modular forms , 1999 .

[10]  John Voight,et al.  Shimura curves of genus at most two , 2008, Math. Comput..

[11]  William Stein,et al.  Modular forms, a computational approach , 2007 .

[12]  R. Langlands,et al.  Automorphic Forms on GL(2) , 1970 .

[13]  F. Jarvis On Galois representations associated to Hilbert modular forms. , 1997 .

[14]  J. Voight Shimura curve computations , 2006 .

[15]  H. Darmon,et al.  Elliptic units for real quadratic fields , 2006 .

[16]  Henri Darmon,et al.  Efficient calculation of Stark-Heegner points via overconvergent modular symbols , 2006 .

[17]  M. Sch On the Modularity of Three Calabi-Yau Threefolds With Bad Reduction at 11 , 2006 .

[18]  Matthew Greenberg STARK-HEEGNER POINTS AND THE COHOMOLOGY OF QUATERNIONIC SHIMURA VARIETIES , 2009 .

[19]  William A. Stein,et al.  A Database of Elliptic Curves - First Report , 2002, ANTS.

[20]  G. Shimura,et al.  On the Cohomology Groups Attached to Certain Vector Valued Differential Forms on the Product of the Upper Half Planes , 1963 .

[21]  Lassina Dembélé,et al.  Computing Hilbert Modular Forms over Fields with Nontrivial Class Group , 2007, ANTS.

[22]  Henri Darmon Integration on ℋ p × ℋ and Arithmetic Applications , 2001 .

[23]  Ju. Manin,et al.  PARABOLIC POINTS AND ZETA-FUNCTIONS OF MODULAR CURVES , 1972 .

[24]  H. Hida p-Adic Automorphic Forms on Shimura Varieties , 2004 .

[25]  J. Cremona Algorithms for Modular Elliptic Curves , 1992 .

[26]  M. Eichler Grenzkreisgruppen und kettenbruchartige Algorithmen , 1965 .

[27]  G. Shimura Construction of Class Fields and Zeta Functions of Algebraic Curves , 1967 .

[28]  E. Freitag Hilbert Modular Forms , 1990 .

[29]  Ariel Pacetti,et al.  Proving modularity for a given elliptic curve over an imaginary quadratic field , 2008, Math. Comput..

[30]  J. Voight Computing fundamental domains for Fuchsian groups , 2008, 0802.0196.

[31]  志村 五郎,et al.  Introduction to the arithmetic theory of automorphic functions , 1971 .

[32]  H. Carayol Sur la mauvaise réduction des courbes de Shimura , 1986 .

[33]  A. Atkin,et al.  Modular Forms , 2017 .

[34]  H. Hida On Abelian Varieties with Complex Multiplication as Factors of the Jacobians of Shimura Curves , 1981 .

[35]  M. Wodzicki Lecture Notes in Math , 1984 .

[36]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[37]  John Cremona,et al.  The Elliptic Curve Database for Conductors to 130000 , 2006, ANTS.

[38]  J. Cremona Hyperbolic tessellations, modular symbols, and elliptic curves over complex quadratic fields , 1984 .

[39]  P. Deligne Travaux de Shimura , 1971 .