Synthesis and vibrational spectroscopic characterisation of synthetic hydrozincite and smithsonite

Abstract Hydrozincite and smithsonite were synthesised by controlling the partial pressure of CO 2 . Previous crystallographic studies concluded that the structure of hydrozincite was a simple one. However both Raman and infrared spectroscopy show that this conclusion is questionable. Multiple bands are observed in both the Raman and infrared spectra in the (CO 3 ) 2− antisymmetric stretching and bending regions of hydrozincite showing that the symmetry of the carbonate anion is reduced and in all probability the carbonate anions are not equivalent in the hydrozincite structure. Multiple OH stretching vibrations centred in both the Raman and infrared spectra show that the OH units in the hydrozincite structure are non-equivalent. The Raman spectrum of synthetic smithsonite is a simple spectrum characteristic of carbonate with Raman bands observed at 1408, 1092 and 730 cm −1 . The symmetry of the carbonate anion in hydrozincite is C 2 v or C s . This symmetry reduction results in multiple bands in both the symmetric stretching and bending regions. The intense band of hydrozincite at 1062 cm −1 is assigned to the ν 1 (CO 3 ) 2− symmetric stretching mode. Three Raman bands assigned to the ν 3 (CO 3 ) 2− antisymmetric stretching modes are observed for hydrozincite at 1545, 1532 and 1380 cm −1 . Multiple infrared or Raman bands are observed in 800–850 cm −1 and 720–750 cm −1 regions and are attributed to ν 2 and ν 4 bending modes confirming the reduction of the carbonate anion symmetry in the hydrozincite structure. A Raman band for hydrozincite at 980 cm −1 is attributed to the δ OH deformation mode.

[1]  R. Frost,et al.  A Raman spectroscopic study of the uranyl phosphate mineral parsonsite , 2006 .

[2]  C. K. HuaNc,et al.  Infrared study of the carbonate minerals , 1960 .

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  J. Hunt,et al.  Infrared Absorption Spectra of Minerals and Other Inorganic Compounds , 1950 .

[5]  R. Frost,et al.  Identification of the rosasite group minerals--an application of near infrared spectroscopy. , 2007, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[6]  R. Herman,et al.  Preparation and characterization of hydroxycarbonate precursors that yield successful alcohol synthesis catalysts , 1993 .

[7]  R. Frost,et al.  Raman Spectroscopy of Walpurgite , 2006 .

[8]  Soichi Wakatsuki Acta Crystallographica , 1948, Nature.

[9]  R. Frost,et al.  Raman spectroscopic detection of wyartite in the presence of rabejacite , 2004 .

[10]  W. Griffith Raman Spectroscopy of Minerals , 1969, Nature.

[11]  B. Kariuki,et al.  The structure of aurichalcite, (Cu,Zn)5(OH)6(CO3)2, determined from a microcrystal , 1994 .

[12]  Godwin A Ayoko,et al.  Raman spectroscopy of uranyl rare earth carbonate kamotoite-(Y). , 2006, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[13]  R. Frost,et al.  Molecular structure of the uranyl mineral andersonite—a Raman spectroscopic study , 2004 .

[14]  J. A. Goldsmith,et al.  The infra-red spectra of azurite and malachite , 1968 .

[15]  John W. Anthony,et al.  Handbook of mineralogy , 1990 .

[16]  W. Griffith Raman studies on rock-forming minerals. Part II. Minerals containing MO3, MO4, and MO6 groups , 1970 .

[17]  P. Williams Oxide zone geochemistry , 1990 .

[18]  R. Frost,et al.  Thermo‐Raman spectroscopic study of the uranium mineral sabugalite , 2005 .

[19]  R. Frost,et al.  Raman spectroscopy of the minerals boléite, cumengéite, diaboléite and phosgenite – implications for the analysis of cosmetics of antiquity , 2003, Mineralogical Magazine.

[20]  V. Koleva,et al.  Infrared study of some synthetic phases of malachite (Cu2(OH)2CO3)-hydrozincite (Zn5(OH)6(CO3)2) series. , 2002, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[21]  A. Musumeci,et al.  Raman spectroscopy of hydrotalcites with phosphate in the interlayer: implications for the removal of phosphate from water , 2006 .

[22]  J. Jambor Studies of basic copper and zinc carbonates; Part 1, Synthetic zinc carbonates and their relationship to hydrozincite , 1964 .

[23]  Ray L. Frost,et al.  Raman spectroscopic study of azurite and malachite at 298 and 77 K , 2002 .

[24]  R. Frost,et al.  Comparison of the Raman spectra of natural and synthetic K‐ and Na‐jarosites at 298 and 77 K , 2005 .

[25]  S. Ghose The crystal structure of hydrozincite, Zn5(OH)6(CO3)2 , 1964 .

[26]  R. Frost,et al.  Raman spectroscopy of some natural hydrotalcites with sulphate and carbonate in the interlayer , 2003 .

[27]  R. Frost,et al.  Raman spectroscopic study of the uranyl tricarbonate mineral liebigite , 2005 .

[28]  R. Frost,et al.  An Application of near Infrared Spectroscopy to the Study of Carbonate Minerals—Smithsonite, Rhodochrosite, Sphaerocobaltite and Cadmium Smithsonite , 2006 .

[29]  R. Frost,et al.  The molecular structure of selected minerals of the rosasite group : An XRD, SEM and infrared spectroscopic study , 2007 .

[30]  B. Guineau ANALYSE NON DESTRUCTIVE DES PIGMENTS PAR MICROSONDE RAMAN LASER: EXEMPLES DE L' AZURITE ET DE LA MALACHITE , 1984 .

[31]  P. Sambasiva Rao,et al.  EPMA, EPR, electronic and vibrational spectral studies on natural aurichalcite , 1996 .

[32]  P. Williams,et al.  Mineral formation from aqueous solution. Part I. The deposition of hydrozincite, Zn5(OH)6(CO3)2, from natural waters , 1979 .

[33]  R. Frost,et al.  Thermal treatment of weddellite: a Raman and infrared emission spectroscopic study , 2003 .

[34]  L. Burgio,et al.  RAMAN MICROSCOPY STUDY OF THE PIGMENTS ON THREE ILLUMINATED MEDIAEVAL LATIN MANUSCRIPTS , 1997 .

[35]  L. Rintoul,et al.  Single crystal raman spectroscopy of cerussite , 2004 .

[36]  S. Palmer,et al.  A Raman spectroscopic study of humite minerals , 2007 .

[37]  R. Frost,et al.  A Raman Spectroscopic Study of the Uranyl Selenite Mineral Haynesite , 2006 .

[38]  Spectrochimica Acta , 1939, Nature.

[39]  R. Frost,et al.  Molecular structure of the uranyl silicates : a Raman spectroscopic study , 2006 .

[40]  R. Frost,et al.  Thermal treatment of whewellite—a thermal analysis and Raman spectroscopic study , 2004 .

[41]  D. Thierry,et al.  Formation of Corrosion Products on Open and Confined Metal Surfaces Exposed to Periodic Wet/Dry Conditions—A Comparison between Zinc and Electrogalvanized Steel , 2001 .

[42]  Robin J. H. Clark Raman microscopy: sensitive probe of pigments on manuscripts, paintings and other artefacts , 1999 .

[43]  R. Frost A Raman spectroscopic study of selected minerals of the rosasite group , 2006 .

[44]  R. Frost,et al.  Raman spectroscopy of three polymorphs of BiVO4: clinobisvanite, dreyerite and pucherite, with comparisons to (VO4)3-bearing minerals: namibite, pottsite and schumacherite , 2006 .