Geology of 243 Ida

Abstract The surface of 243 Ida is dominated by the effects of impacts. No complex crater morphologies are observed. A complete range of crater degradation states is present, which also reveals optical maturation of the surface (darkening and reddening of materials with increasing exposure age). Regions of bright material associated with the freshest craters might be ballistically emplaced deposits or the result of seismic disturbance of loosely-bound surface materials. Diameter/depth ratios for fresh craters on Ida are ∼1:6.5, similar to Gaspra results, but greater than the 1:5 ratios common on other rocky bodies. Contributing causes include rim degradation by whole-body “ringing,” relatively thin ejecta blankets around crater rims, or an extended strength gradient in near-surface materials due to low gravitational self-packing. Grooves probably represent expressions in surface debris of reactivated fractures in the deeper interior. Isolated positive relief features as large as 150 m are probably ejecta blocks related to large impacts. Evidence for the presence of debris on the surface includes resolved ejecta blocks, mass-wasting scars, contrasts in color and albedo of fresh crater materials, and albedo streaks oriented down local slopes. Color data indicate relatively uniform calcium abundance in pyroxenes and constant pyroxene/olivine ratio. A large, relatively blue unit across the northern polar area is probably related to regolith processes involving ejecta from Azzurra rather than representing internal compositional heterogeneity. A small number of bluer, brighter craters are randomly distributed across the surface, unlike on Gaspra where these features are concentrated along ridges. This implies that debris on Ida is less mobile and/or consistently thicker than on Gaspra. Estimates of the average depth of mobile materials derived from chute depths (20–60 m), grooves (≥30 m), and shallowing of the largest degraded craters (20–50 m minimum, ∼100 m maximum) suggest a thickness of potentially mobile materials of ∼50 m, and a typical thickness for the debris layer of 50–100 m.

[1]  R. Sullivan,et al.  Mechanical and geological effects of impact cratering on Ida , 1996 .

[2]  A. McEwen,et al.  Galileo Photometry of Asteroid 243 Ida , 1996 .

[3]  R. Sullivan,et al.  The Shape of Ida , 1996 .

[4]  Daniel D. Durda,et al.  EROSION AND EJECTA REACCRETION ON 243 IDA AND ITS MOON , 1996 .

[5]  A. McEwen,et al.  Galileo's Encounter with 243 Ida: An Overview of the Imaging Experiment , 1996 .

[6]  A. McEwen,et al.  Ida and Dactyl: Spectral reflectance and color variations , 1996 .

[7]  J. Head,et al.  Collisional and Dynamical History of Ida , 1996 .

[8]  R. Greeley,et al.  Ejecta Blocks on 243 Ida and on Other Asteroids , 1996 .

[9]  Gerhard Neukum,et al.  Cratering on Ida , 1996 .

[10]  A. McEwen,et al.  First Images of Asteroid 243 Ida , 1994, Science.

[11]  M. Nolan,et al.  Velocity Distributions among Colliding Asteroids , 1994 .

[12]  Jennifer L. Piatek,et al.  Mineralogical Variations within the S-Type Asteroid Class , 1993 .

[13]  R. Binzel,et al.  Spectral Variations within the Koronis Family: Possible Implications for the Surface Colors of Asteroid 243 Ida , 1993 .

[14]  D. Tholen,et al.  Asteroid 243 Ida: Groundbased Photometry and a Pre-Galileo Physical Model , 1993 .

[15]  T. Ahrens,et al.  Planetary cratering mechanics , 1993 .

[16]  A. McEwen,et al.  Galileo Encounter with 951 Gaspra: First Pictures of an Asteroid , 1992, Science.

[17]  Torrence V. Johnson,et al.  Galileo completing VEEGA — A mid-term report , 1992 .

[18]  Michael J. Gaffey,et al.  Pyroxene spectroscopy revisited - Spectral-compositional correlations and relationship to geothermometry , 1991 .

[19]  A. McEwen Photometric functions for photoclinometry and other applications , 1991 .

[20]  A. Fujiwara Stickney-forming impact on phobos: crater shape and induced stress distribution , 1991 .

[21]  H. Melosh,et al.  The Stickney Impact of Phobos: A Dynamical Model , 1990 .

[22]  G. Tilton,et al.  Geochim. cosmochim. acta , 1989 .

[23]  J. Head,et al.  Dynamics of Groove Formation on Phobos by Ejecta from Stickney Crater: Predictions and Tests , 1989 .

[24]  R. Binzel Collisional evolution in the Eos and Koronis asteroid families: observational and numerical results , 1988 .

[25]  Michael J. Gaffey,et al.  Calibrations of phase abundance, composition, and particle size distribution for olivine-orthopyroxene mixtures from reflectance spectra , 1986 .

[26]  J. Veverka,et al.  Phobos, Deimos, and the Moon: size and distribution of crater ejecta blocks , 1986 .

[27]  J. Head,et al.  The nature of crater rays: The Copernicus example , 1985 .

[28]  Carle M. Pieters,et al.  Near-infrared spectroscopy of probable impact melt from three large lunar highland craters , 1985 .

[29]  D. J. Tholen,et al.  The Eight-Color Asteroid Survey: Results for 589 Minor Planets , 1985 .

[30]  K. Holsapple,et al.  Crater ejecta scaling laws - Fundamental forms based on dimensional analysis , 1983 .

[31]  F. Hörz,et al.  Asteroidal agglutinate formation and implications for asteroidal surfaces , 1981 .

[32]  J. Veverka,et al.  Downslope movement of material on Deimos , 1980 .

[33]  Thomas C. Duxbury,et al.  Grooves on Phobos: Their distribution, morphology and possible origin , 1979 .

[34]  J. Veverka,et al.  Grooves on asteroids: A prediction , 1979 .

[35]  P. Thomas Surface features of Phobos and Deimos , 1979 .

[36]  T. Duxbury,et al.  Phobos: Photometry and origin of dark markings on crater floors. [Viking Orbiter 1 photography] , 1978 .

[37]  W. Wiesel Fragmentation of asteroids and artificial satellites in orbit , 1978 .

[38]  T. Ahrens,et al.  Meteorite impact ejecta: dependence of mass and energy lost on planetary escape velocity. , 1977, Science.

[39]  Michael C. Malin,et al.  Landform degradation on Mercury, the Moon, and Mars: Evidence from crater depth/diameter relationships , 1977 .

[40]  C. Chapman Asteroids as meteorite parent-bodies: the astronomical perspective , 1976 .

[41]  Michael J. Gaffey,et al.  Spectral reflectance characteristics of the meteorite classes , 1976 .

[42]  D. Gault,et al.  Some comparisons of impact craters on Mercury and the Moon , 1975 .

[43]  David Morrison,et al.  Surface properties of asteroids - A synthesis of polarimetry, radiometry, and spectrophotometry , 1975 .

[44]  Keith A. Howard,et al.  Flows of impact melt at lunar craters , 1975 .

[45]  T. Kirsten,et al.  The records of solar wind and solar flares in aubrites , 1974 .

[46]  E. Anders Do stony meteorites come from comets , 1974 .

[47]  John B. Adams,et al.  Visible and near‐infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system , 1974 .

[48]  P. Price,et al.  Gas-Rich Meteorites: Possible Evidence for Origin on a Regolith , 1974, Science.

[49]  Verne R. Oberbeck,et al.  Monte Carlo calculations of lunar Regolith thickness distributions , 1973 .

[50]  W. Hartmann Ancient lunar mega-regolith and subsurface structure , 1973 .

[51]  N. Short,et al.  Thickness of impact crater ejecta on the lunar surface , 1970 .

[52]  Verne R. Oberbeck,et al.  Thickness determinations of the lunar surface layer from lunar impact craters. , 1968 .

[53]  H. Holt,et al.  Television observations from Surveyor 3 , 1968 .

[54]  C. A. Pearse Photometry and polarimetry of the moon and their relationship to physical properties of the lunar surface , 1963 .

[55]  G. Kuiper On the origin of asteroids , 1950 .

[56]  A. McEwen,et al.  The Geology of Gaspra , 1994 .

[57]  W. Benz,et al.  The surface and interior of Phobos , 1994 .

[58]  R. Greeley,et al.  Discovery of Grooves on Gaspra , 1994 .

[59]  Clark R. Chapman,et al.  The Shape of Gaspra , 1994 .

[60]  J. Veverka,et al.  Collisional History of Gaspra , 1994 .

[61]  Erik Asphaug,et al.  Impact Simulations with Fracture. I. Method and Tests , 1994 .

[62]  D. Burnett,et al.  Lunar surface processes , 1992 .

[63]  C. Chapman,et al.  Distribution of taxonomic classes and the compositional structure of the asteroid belt. , 1989 .

[64]  J. Bell,et al.  Asteroid families - Physical properties and evolution , 1989 .

[65]  R. Kirk,et al.  I. Thermal Evolution of Ganymede and Implications for Surface Features. II. Magnetohydrodynamic Constraints on Deep Zonal Flow in the Giant Planets. III. A Fast Finite-Element Algorithm for Two-Dimensional Photoclinometry , 1987 .

[66]  J. Veverka,et al.  The physical characteristics of satellite surfaces , 1986 .

[67]  E. Bromhead STABILITY OF SLOPES , 1986 .

[68]  K. Housen,et al.  REGOLITHS ON SMALL BODIES IN THE SOLAR SYSTEM , 1982 .

[69]  H. Schober,et al.  Surface Properties of Asteroids , 1982 .

[70]  B. R. Hawke,et al.  Remote sensing studies of lunar dark-halo impact craters: Preliminary results and implications for early volcanism , 1982 .

[71]  R. Grieve Impact cratering , 1981, Nature.

[72]  R. J. Pike Geometric interpretation of lunar craters , 1980 .

[73]  C. Chapman,et al.  Families of minor planets , 1979 .

[74]  J. Veverka,et al.  Phobos and Deimos - A preview of what asteroids are like , 1979 .

[75]  M. Cintala,et al.  The nature and effects of impact cratering on small bodies , 1979 .

[76]  M. Cintala,et al.  Grooves on Phobos: evidence for possible secondary cratering origin. , 1979 .

[77]  R. Greenberg,et al.  Regolith development and evolution on asteroids and the moon , 1979 .

[78]  P. Spudis,et al.  Evidence for ancient mare volcanism , 1979 .

[79]  F. Hoerz,et al.  Shock metamorphism of granulated lunar basalt , 1979 .

[80]  T. McCord,et al.  Multispectral Imaging of Lunar Crater Deposits , 1979 .

[81]  E. Anders Most stony meteorites come from the asteroid belt , 1978 .

[82]  M. Cintala,et al.  Characteristics of the cratering process on small satellites and asteroids , 1978 .

[83]  C. Chapman Asteroid collisions, craters, regoliths, and lifetimes , 1978 .

[84]  P. Thomas The morphology of PHOBOS and Deimos , 1978 .

[85]  Richard J. Pike,et al.  Size-dependence in the shape of fresh impact craters on the moon , 1977 .

[86]  F. Hoerz,et al.  Shock metamorphism of lunar and terrestrial basalts , 1977 .

[87]  T. Johnson,et al.  Soil maturity and planetary regoliths: the Moon, Mercury, and the asteroids. , 1977 .

[88]  J. Head The significance of substrate characteristics in determining morphology and morphometry of lunar craters , 1976 .

[89]  T. Ahrens,et al.  Equations of state and impact-induced shock-wave attenuation on the moon , 1976 .

[90]  H. Zook The state of meteoritic material on the moon , 1975 .

[91]  J. K. Mitchell,et al.  Lunar soil density and porosity. , 1974 .

[92]  Verne R. Oberbeck,et al.  Genetic implications of Lunar regolith thickness variations , 1968 .

[93]  Eugene M. Shoemaker,et al.  STRATIGRAPHIC BASIS FOR A LUNAR TIME SCALE , 1962 .