Modelling and analysis of Markov reward automata (extended version)

Costs and rewards are important ingredients for cyberphysical systems, modelling critical aspects like energy consumption, task completion, repair costs, and memory usage. This paper introduces Markov reward automata, an extension of Markov automata that allows the modelling of systems incorporating rewards (or costs) in addition to nondeterminism, discrete probabilistic choice and continuous stochastic timing. Rewards come in two flavours: action rewards, acquired instantaneously when taking a transition; and state rewards, acquired while residing in a state. We present algorithms to optimise three reward functions: the expected accumulative reward until a goal is reached; the expected accumulative reward until a certain time bound; and the long-run average reward. We have implemented these algorithms in the SCOOP/IMCA tool chain and show their feasibility via several case studies.

[1]  Zohar Manna,et al.  Formal verification of probabilistic systems , 1997 .

[2]  Mariëlle Stoelinga,et al.  Modelling and Analysis of Markov Reward Automata , 2014, ATVA.

[3]  Joost-Pieter Katoen,et al.  On the use of model checking techniques for dependability evaluation , 2000, Proceedings 19th IEEE Symposium on Reliable Distributed Systems SRDS-2000.

[4]  Martin R. Neuhäußer,et al.  Model checking nondeterministic and randomly timed systems , 2010 .

[5]  Krishnendu Chatterjee,et al.  Faster and dynamic algorithms for maximal end-component decomposition and related graph problems in probabilistic verification , 2011, SODA '11.

[6]  Rob Bamberg Non-Deterministic Generalised Stochastic Petri Nets Modelling and Analysis , 2012 .

[7]  Roberto Segala,et al.  Modeling and verification of randomized distributed real-time systems , 1996 .

[8]  Joost-Pieter Katoen,et al.  Safety, Dependability and Performance Analysis of Extended AADL Models , 2011, Comput. J..

[9]  Lijun Zhang,et al.  A Semantics for Every GSPN , 2013, Petri Nets.

[10]  Lijun Zhang,et al.  On Probabilistic Automata in Continuous Time , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[11]  Marco Bernardo,et al.  An Algebra-Based Method to Associate Rewards with EMPA Terms , 1997, ICALP.

[12]  Joost-Pieter Katoen,et al.  Discrete-Time Rewards Model-Checked , 2003, FORMATS.

[13]  Bernd Becker,et al.  MeGARA: Menu-based Game Abstraction and Abstraction Refinement of Markov Automata , 2014, QAPL.

[14]  W. Marsden I and J , 2012 .

[15]  Mark Timmer,et al.  Efficient modelling, generation and analysis of Markov automata , 2013 .

[16]  Roland Wunderling,et al.  Paralleler und objektorientierter Simplex-Algorithmus , 1996 .

[17]  Lijun Zhang,et al.  Concurrency and Composition in a Stochastic World , 2010, CONCUR.

[18]  Joost-Pieter Katoen,et al.  Modelling, Reduction and Analysis of Markov Automata (extended version) , 2013, QEST.

[19]  Krishnendu Chatterjee,et al.  Two Views on Multiple Mean-Payoff Objectives in Markov Decision Processes , 2011, 2011 IEEE 26th Annual Symposium on Logic in Computer Science.

[20]  Joost-Pieter Katoen,et al.  The Ins and Outs of the Probabilistic Model Checker MRMC , 2009, 2009 Sixth International Conference on the Quantitative Evaluation of Systems.

[21]  Holger Hermanns,et al.  Interactive Markov Chains , 2002, Lecture Notes in Computer Science.

[22]  Mariëlle Stoelinga,et al.  A Rigorous, Compositional, and Extensible Framework for Dynamic Fault Tree Analysis , 2010, IEEE Transactions on Dependable and Secure Computing.

[23]  Holger Hermanns,et al.  Model Checking Algorithms for Markov Automata , 2012, Electron. Commun. Eur. Assoc. Softw. Sci. Technol..

[24]  Christel Baier,et al.  Model checking performability properties , 2002, Proceedings International Conference on Dependable Systems and Networks.

[25]  Matthew Hennessy,et al.  On the semantics of Markov automata , 2011, Inf. Comput..

[26]  Joost-Pieter Katoen,et al.  Delayed Nondeterminism in Continuous-Time Markov Decision Processes , 2009, FoSSaCS.

[27]  Mark Timmer SCOOP: A Tool for SymboliC Optimisations of Probabilistic Processes , 2011, 2011 Eighth International Conference on Quantitative Evaluation of SysTems.

[28]  Jaco van de Pol,et al.  State Space Reduction of Linear Processes Using Control Flow Reconstruction , 2009, ATVA.

[29]  Matthew Hennessy,et al.  Compositional reasoning for weighted Markov decision processes , 2013, Sci. Comput. Program..

[30]  Joost-Pieter Katoen,et al.  Efficient Modelling and Generation of Markov Automata , 2012, CONCUR.

[31]  Lijun Zhang,et al.  Late Weak Bisimulation for Markov Automata , 2012, ArXiv.

[32]  Jan Friso Groote,et al.  The Syntax and Semantics of μCRL , 1995 .

[33]  Mandyam M. Srinivasan,et al.  Nondeterministic polling systems , 1991 .

[34]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[35]  Stefan Blom,et al.  Extending Markov Automata with State and Action Rewards , 2014 .

[36]  Joost-Pieter Katoen,et al.  Quantitative Timed Analysis of Interactive Markov Chains , 2012, NASA Formal Methods.