Analysing correlated noise on the surface code using adaptive decoding algorithms

Laboratory hardware is rapidly progressing towards a state where quantum error-correcting codes can be realised. As such, we must learn how to deal with the complex nature of the noise that may occur in real physical systems. Single qubit Pauli errors are commonly used to study the behaviour of error-correcting codes, but in general we might expect the environment to introduce correlated errors to a system. Given some knowledge of structures that errors commonly take, it may be possible to adapt the error-correction procedure to compensate for this noise, but performing full state tomography on a physical system to analyse this structure quickly becomes impossible as the size increases beyond a few qubits. Here we develop and test new methods to analyse blue a particular class of spatially correlated errors by making use of parametrised families of decoding algorithms. We demonstrate our method numerically using a diffusive noise model. We show that information can be learnt about the parameters of the noise model, and additionally that the logical error rates can be improved. We conclude by discussing how our method could be utilised in a practical setting blue and propose extensions of our work to study more general error models.

[1]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[2]  AdrianHutter Improved HDRG decoders for qudit and non-Abelian quantum error correction , 2015 .

[3]  Koen Bertels,et al.  Decoding small surface codes with feedforward neural networks , 2017, 1705.00857.

[4]  Luigi Frunzio,et al.  Realization of three-qubit quantum error correction with superconducting circuits , 2011, Nature.

[5]  Andrew W. Cross,et al.  Demonstration of a quantum error detection code using a square lattice of four superconducting qubits , 2015, Nature Communications.

[6]  Austin G. Fowler,et al.  Quantifying the effects of local many-qubit errors and nonlocal two-qubit errors on the surface code , 2014 .

[7]  Austin G. Fowler,et al.  Optimal complexity correction of correlated errors in the surface code , 2013, 1310.0863.

[8]  DiVincenzo,et al.  Fault-Tolerant Error Correction with Efficient Quantum Codes. , 1996, Physical review letters.

[9]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[10]  Jiannis K. Pachos,et al.  Quantum memories at finite temperature , 2014, 1411.6643.

[11]  H. Bombin Resilience to time-correlated noise in quantum computation , 2016, 1605.03679.

[12]  Carlton M. Caves,et al.  In-situ characterization of quantum devices with error correction , 2014, 1405.5656.

[13]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[14]  Sergey Bravyi,et al.  Correcting coherent errors with surface codes , 2017, npj Quantum Information.

[15]  E. Mucciolo,et al.  Long-time efficacy of the surface code in the presence of a super-Ohmic environment , 2016, 1612.06460.

[16]  Andrew W. Cross,et al.  Doubled Color Codes , 2015, 1509.03239.

[17]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[18]  Ying Li,et al.  Topological quantum computing with a very noisy network and local error rates approaching one percent , 2012, Nature Communications.

[19]  James R. Wootton,et al.  High threshold error correction for the surface code. , 2012, Physical review letters.

[20]  David Poulin,et al.  Tensor-Network Simulations of the Surface Code under Realistic Noise. , 2016, Physical review letters.

[21]  J. Preskill,et al.  Confinement Higgs transition in a disordered gauge theory and the accuracy threshold for quantum memory , 2002, quant-ph/0207088.

[22]  Stephen D Bartlett,et al.  Ultrahigh Error Threshold for Surface Codes with Biased Noise. , 2017, Physical review letters.

[23]  David Poulin,et al.  A small quantum computer is needed to optimize fault-tolerant protocols , 2017, Quantum Science and Technology.

[24]  Eduardo R Mucciolo,et al.  Surface code threshold in the presence of correlated errors. , 2012, Physical review letters.

[25]  T. E. O'Brien,et al.  Adaptive Weight Estimator for Quantum Error Correction in a Time‐Dependent Environment , 2017, Advanced Quantum Technologies.

[26]  M. Fannes,et al.  On thermalization in Kitaev's 2D model , 2008, 0810.4584.

[27]  Austin G. Fowler,et al.  Topological code Autotune , 2012, 1202.6111.

[28]  Austin G. Fowler,et al.  Graphical algorithms and threshold error rates for the 2d color code , 2009, Quantum Inf. Comput..

[29]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[30]  Andrew J. Landahl,et al.  Fault-tolerant quantum computing with color codes , 2011, 1108.5738.

[31]  B. Terhal,et al.  Roads towards fault-tolerant universal quantum computation , 2016, Nature.

[32]  David Poulin,et al.  Fast decoders for topological quantum codes. , 2009, Physical review letters.

[33]  H. Bombin,et al.  Single-Shot Fault-Tolerant Quantum Error Correction , 2014, 1404.5504.

[34]  David P. DiVincenzo,et al.  Methodology for bus layout for topological quantum error correcting codes , 2015, EPJ Quantum Technology.

[35]  Ashley M. Stephens,et al.  Efficient fault-tolerant decoding of topological color codes , 2014, 1402.3037.

[36]  Nicolas Delfosse,et al.  Almost-linear time decoding algorithm for topological codes , 2017, Quantum.

[37]  P. Shor,et al.  QUANTUM-CHANNEL CAPACITY OF VERY NOISY CHANNELS , 1997, quant-ph/9706061.

[38]  Giacomo Torlai,et al.  Neural Decoder for Topological Codes. , 2016, Physical review letters.

[39]  Krysta Marie Svore,et al.  Low-distance Surface Codes under Realistic Quantum Noise , 2014, ArXiv.

[40]  Ying Li,et al.  Learning time-dependent noise to reduce logical errors: real time error rate estimation in quantum error correction , 2017, 1710.03636.

[41]  Simon J. Devitt,et al.  Surface code error correction on a defective lattice , 2016, 1607.00627.

[42]  Jean-Pierre Tillich,et al.  A decoding algorithm for CSS codes using the X/Z correlations , 2014, 2014 IEEE International Symposium on Information Theory.

[43]  N. Maskara,et al.  Advantages of versatile neural-network decoding for topological codes , 2018, Physical Review A.

[44]  Joe O'Gorman,et al.  A silicon-based surface code quantum computer , 2014, npj Quantum Information.

[45]  D. Loss,et al.  Self-correcting quantum memory in a thermal environment , 2009, 0908.4264.

[46]  P. Baireuther,et al.  Machine-learning-assisted correction of correlated qubit errors in a topological code , 2017, 1705.07855.

[47]  John M. Martinis,et al.  Scalable in situ qubit calibration during repetitive error detection , 2016, 1603.03082.

[48]  T. M. Stace,et al.  Error Correction and Degeneracy in Surface Codes Suffering Loss , 2009, 0912.1159.

[49]  Maika Takita,et al.  Demonstration of Weight-Four Parity Measurements in the Surface Code Architecture. , 2016, Physical review letters.

[50]  E. Knill,et al.  Realization of quantum error correction , 2004, Nature.

[51]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[52]  Nicolas Delfosse,et al.  Decoding color codes by projection onto surface codes , 2013, ArXiv.

[53]  Earl T. Campbell,et al.  Fast decoders for qudit topological codes , 2013, 1311.4895.

[54]  R. Raussendorf,et al.  A fault-tolerant one-way quantum computer , 2005, quant-ph/0510135.

[55]  Liang Jiang,et al.  Deep Neural Network Probabilistic Decoder for Stabilizer Codes , 2017, Scientific Reports.

[56]  John M. Martinis,et al.  State preservation by repetitive error detection in a superconducting quantum circuit , 2015, Nature.

[57]  Eduardo R. Mucciolo,et al.  Fidelity Threshold of the Surface Code Beyond Single-Qubit Error Models , 2014 .

[58]  Sean D. Barrett,et al.  Logical error rate scaling of the toric code , 2013, 1312.5213.

[59]  John Preskill,et al.  Sufficient condition on noise correlations for scalable quantum computing , 2012, Quantum Inf. Comput..

[60]  Imran Ashraf,et al.  Multi-path Summation for Decoding 2D Topological Codes , 2017, Quantum.

[61]  John Preskill,et al.  Fault-tolerant quantum computation with long-range correlated noise. , 2006, Physical review letters.

[62]  James R. Wootton,et al.  Efficient Markov chain Monte Carlo algorithm for the surface code , 2013, 1302.2669.

[63]  John Preskill,et al.  Fault-tolerant quantum computation versus Gaussian noise , 2008, 0810.4953.

[64]  Ruben S. Andrist,et al.  Stability of topologically-protected quantum computing proposals as seen through spin glasses , 2013, 1306.0540.

[65]  Martin Suchara,et al.  Efficient Algorithms for Maximum Likelihood Decoding in the Surface Code , 2014, 1405.4883.

[66]  Mercedes Gimeno-Segovia,et al.  Fault-tolerance thresholds for the surface code with fabrication errors , 2017, 1706.04912.

[67]  A. Fowler,et al.  High-threshold universal quantum computation on the surface code , 2008, 0803.0272.

[68]  Hidetoshi Nishimori,et al.  Geometry-Induced Phase Transition in the ±J Ising Model , 1986 .

[69]  David P. DiVincenzo,et al.  Fault-tolerant architectures for superconducting qubits , 2009, 0905.4839.

[70]  Benjamin J. Brown,et al.  Fault-tolerant error correction with the gauge color code , 2015, Nature Communications.

[71]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[72]  Christopher T. Chubb,et al.  Statistical mechanical models for quantum codes with correlated noise , 2018, 1809.10704.

[73]  K. B. Whaley,et al.  Relaxation dynamics of the toric code in contact with a thermal reservoir: Finite-size scaling in a low-temperature regime , 2014, 1405.2315.

[74]  Vladimir Kolmogorov,et al.  Blossom V: a new implementation of a minimum cost perfect matching algorithm , 2009, Math. Program. Comput..

[75]  Daniel Loss,et al.  Breakdown of surface-code error correction due to coupling to a bosonic bath , 2014, 1402.3108.

[76]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[77]  R. Blatt,et al.  Quantum computations on a topologically encoded qubit , 2014, Science.

[78]  E. Novais,et al.  Fidelity of the surface code in the presence of a bosonic bath , 2013 .

[79]  Sergey Bravyi,et al.  Simulation of rare events in quantum error correction , 2013, 1308.6270.

[80]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.