Applications of a Numbering Scheme for Polygonal Obstacles in the Plane

We present efficient algorithms for the problems of matching red and blue disjoint geometric obstacles in the plane and connecting the matched obstacle pairs with mutually nonintersecting paths that have useful geometric properties. We first consider matching n red and n blue disjoint isothetic rectangles and connecting the n matched rectangle pairs with nonintersecting monotone rectilinear paths; each such path consists of O(n) segments and is not allowed to touch any rectangle other than the matched pair that it is linking. Based on a numbering scheme for certain geometric objects and on several useful geometric observations, we develop an O(n log n) time, O(n) space algorithm that produces a desired matching for isothetic rectangles. If an explicit printing of all the n paths is required, then our algorithm takes O(n log n+λ) time and O(n) space, where λ is the total size of the desired output. We then extend these matching algorithms to other classes of red/blue polygonal obstacles. The numbering scheme also finds applications to other problems.

[1]  Chak-Kuen Wong,et al.  On the X-Y convex hull of a set of X-Y polygons , 1983, BIT Comput. Sci. Sect..

[2]  Michael T. Goodrich,et al.  Finding the Convex Hull of a Sorted Point Set in Parallel , 1987, Inf. Process. Lett..

[3]  Andrew Chi-Chih Yao Lower Bounds for Algebraic Computation Trees with Integer Inputs , 1991, SIAM J. Comput..

[4]  Joseph JáJá,et al.  An Introduction to Parallel Algorithms , 1992 .

[5]  Robert E. Tarjan,et al.  Finding Biconnected Components and Computing Tree Functions in Logarithmic Parallel Time (Extended Summary) , 1984, FOCS.

[6]  David Eppstein,et al.  The expected extremes in a Delaunay triangulation , 1991, Int. J. Comput. Geom. Appl..

[7]  D. T. Lee,et al.  Rectilinear shortest paths in the presence of rectangular barriers , 1989, Discret. Comput. Geom..

[8]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[9]  Chak-Kuen Wong,et al.  Rectilinear Shortest Paths and Minimum Spanning Trees in the Presence of Rectilinear Obstacles , 1987, IEEE Transactions on Computers.

[10]  Kenneth L. Clarkson,et al.  Rectilinear shortest paths through polygonal obstacles in O(n(logn)2) time , 1987, SCG '87.

[11]  Takao Nishizeki,et al.  Finding Shortest Non-Crossing Rectilinear Paths in Plane Regions , 1993, ISAAC.

[12]  Michael Ben-Or,et al.  Lower bounds for algebraic computation trees , 1983, STOC.

[13]  Evanthia Papadopoulou,et al.  k-Pairs Non-Crossing Shortest Paths in a Simple Polygon , 1996, Int. J. Comput. Geom. Appl..

[14]  Mikhail J. Atallah,et al.  On Parallel Rectilinear Obstacle- Avoiding Paths , 1993, Comput. Geom..

[15]  Mark de Berg,et al.  Shortest path queries in rectilinear worlds of higher dimension (extended abstract) , 1991, SCG '91.

[16]  Franco P. Preparata,et al.  Testing a Simple Polygon for Monotonicity , 1981, Inf. Process. Lett..

[17]  Pinaki Mitra,et al.  Orthogonal shortest route queries among axis parallel rectangular obstacles , 1994, Int. J. Comput. Geom. Appl..

[18]  Victor O. K. Li,et al.  Finding minimum rectilinear distance paths in the presence of barriers , 1981, Networks.

[19]  Andrew Chi-Chih Yao Lower bounds for algebraic computation trees with integer inputs , 1989, 30th Annual Symposium on Foundations of Computer Science.

[20]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[21]  Chee Yap,et al.  Rectilinear geodesics in 3-space , 1995 .

[22]  Chee-Keng Yap,et al.  Rectilinear geodesics in 3-space (extended abstract) , 1995, SCG '95.

[23]  Richard Cole,et al.  Cascading divide-and-conquer: A technique for designing parallel algorithms , 1989, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[24]  S. Sitharama Iyengar,et al.  Introduction to parallel algorithms , 1998, Wiley series on parallel and distributed computing.

[25]  Chak-Kuen Wong,et al.  Rectilinear Path Problems among Rectilinear Obstacles Revisited , 1995, SIAM J. Comput..

[26]  Mikhail J. Atallah A Matching Problem in the Plane , 1985, J. Comput. Syst. Sci..

[27]  D. T. Lee,et al.  Shortest rectilinear paths among weighted obstacles , 1990, SCG '90.

[28]  Danny Ziyi Chen,et al.  Efficient Geometric Algorithms on the EREW PRAM , 1995, IEEE Trans. Parallel Distributed Syst..

[29]  Der-Tsai Lee,et al.  Shortest rectilinear paths among weighted rectangles , 1989 .

[30]  Mikhail J. Atallah,et al.  Parallel rectilinear shortest paths with rectangular obstacles , 1990, SPAA '90.

[31]  Chak-Kuen Wong,et al.  On Some Distance Problems in Fixed Orientations , 1987, SIAM J. Comput..

[32]  Binay K. Bhattacharya,et al.  Efficient Approximate Shortest-Path Queries Among Isothetic Rectangular Obstacles , 1993, WADS.

[33]  Jan van Leeuwen,et al.  Maintenance of Configurations in the Plane , 1981, J. Comput. Syst. Sci..

[34]  Danny Ziyi Chen,et al.  Shortest path queries among weighted obstacles in the rectilinear plane , 1995, SCG '95.

[35]  Takao Nishizeki,et al.  Algorithms for Finding Non-Crossing Paths with Minimum Total Length in Plane Graphs , 1992, ISAAC.

[36]  Tetsuo Asano,et al.  Routing Region Definition and Ordering Scheme for Building-Block Layout , 1985, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[37]  Danny Ziyi Chen,et al.  Rectilinear Short Path Queries Among Rectangular Obstacles , 1996, Inf. Process. Lett..

[38]  D. T. Lee,et al.  Parallel algorithms for maximum matching in interval graphs , 1995, Proceedings of 9th International Parallel Processing Symposium.