Regularity properties of the distance functions to conjugate and cut loci for viscosity solutions of Hamilton-Jacobi equations and applications in Riemannian geometry

Given a continuous viscosity solution of a Dirichlet-type Hamilton-Jacobi equation, we show that the distance function to the conjugate locus which is associated to this problem is locally semiconcave on its domain. It allows us to provide a simple proof of the fact that the distance function to the cut locus associated to this problem is locally Lipschitz on its domain. This result, which was already an improvement of a previous one by Itoh and Tanaka [Trans. Amer. Math. Soc.  353 (2001) 21–40], is due to Li and Nirenberg [Comm. Pure Appl. Math.  58 (2005) 85–146]. Finally, we give applications of our results in Riemannian geometry. Namely, we show that the distance function to the conjugate locus on a Riemannian manifold is locally semiconcave. Then, we show that if a Riemannian manifold is a C 4 -deformation of the round sphere, then all its tangent nonfocal domains are strictly uniformly convex.

[1]  C. Villani,et al.  Regularity of optimal transport in curved geometry: The nonfocal case , 2010 .

[2]  Cédric Villani,et al.  On the Ma–Trudinger–Wang curvature on surfaces , 2010 .

[3]  P. Nistri,et al.  On Discontinuous Differential Equations , 2009 .

[4]  A. Figalli,et al.  Continuity of optimal transport maps and convexity of injectivity domains on small deformations of 𝕊2 , 2009 .

[5]  C. Villani Optimal Transport: Old and New , 2008 .

[6]  Ana Cannas da Silva,et al.  Lectures on Symplectic Geometry , 2008 .

[7]  Cédric Villani,et al.  An Approximation Lemma about the Cut Locus, with Applications in Optimal Transport Theory , 2008 .

[8]  L. Rifford On Viscosity Solutions of Certain Hamilton–Jacobi Equations: Regularity Results and Generalized Sard's Theorems , 2008 .

[9]  Louis Nirenberg,et al.  Regularity of the distance function to the boundary , 2005 .

[10]  A. Agrachev Geometry of Optimal Control Problems and Hamiltonian Systems , 2005, math/0506197.

[11]  P. Cannarsa,et al.  Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control , 2004 .

[12]  Ludovic Rifford,et al.  A Morse-Sard theorem for the distance function on Riemannian manifolds , 2004 .

[13]  Zdzisław Denkowski,et al.  Set-Valued Analysis , 2021 .

[14]  高倉 樹 書評 Ana Cannas da Silva: Lectures on Symplectic Geometry(Lecture Notes in Math.,1764) , 2003 .

[15]  Louis Nirenberg,et al.  The distance function to the boundary, Finsler geometry, and the singular set of viscosity solutions of some Hamilton‐Jacobi equations , 2003, math/0306122.

[16]  C. Pignotti,et al.  Rectifiability results for singular and conjugate points of optimal exit time problems , 2002 .

[17]  Albert Fathi,et al.  Weak KAM Theorem in Lagrangian Dynamics , 2001 .

[18]  Ludovic Rifford,et al.  Existence of Lipschitz and Semiconcave Control-Lyapunov Functions , 2000, SIAM J. Control. Optim..

[19]  Jin-ichi Itoh,et al.  The Lipschitz continuity of the distance function to the cut locus , 2000 .

[20]  Francis H. Clarke,et al.  Feedback Stabilization and Lyapunov Functions , 2000, SIAM J. Control. Optim..

[21]  Yu. S. Ledyaev,et al.  A Lyapunov characterization of robust stabilization , 1999 .

[22]  Eduardo Sontag Stability and stabilization: discontinuities and the effect of disturbances , 1999, math/9902026.

[23]  Jean-Michel Coron,et al.  On the stabilization of some nonlinear control systems: results, tools, and applications , 1999 .

[24]  A. Teel,et al.  A Smooth Lyapunov Function from a Class-kl Estimate Involving Two Positive Semideenite Functions , 1999 .

[25]  Andrew R. Teel,et al.  On assigning the derivative of a disturbance attenuation CLF , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[26]  Yu. S. Ledyaev,et al.  Asymptotic Stability and Smooth Lyapunov Functions , 1998 .

[27]  Cyrille Imbert,et al.  Les fonctions d'appui de la Jacobienne généralisée de Clarke et de son enveloppe plénière , 1998 .

[28]  Yu. S. Ledyaev,et al.  Nonsmooth analysis and control theory , 1998 .

[29]  R. Freeman,et al.  Robust Nonlinear Control Design: State-Space and Lyapunov Techniques , 1996 .

[30]  Randy A. Freeman,et al.  Robust Nonlinear Control Design , 1996 .

[31]  Yuandan Lin,et al.  A Smooth Converse Lyapunov Theorem for Robust Stability , 1996 .

[32]  Randy A. Freeman,et al.  Backstepping Design with Nonsmooth Nonlinearities , 1995 .

[33]  G. Barles Solutions de viscosité des équations de Hamilton-Jacobi , 1994 .

[34]  John Tsinias,et al.  An extension of Artstein's theorem on stabilization by using ordinary feedback integrators , 1993 .

[35]  L. Rosier Etude de quelques problèmes de stabilisation , 1993 .

[36]  Giovanni Alberti,et al.  On the singularities of convex functions , 1992 .

[37]  K. Deimling Multivalued Differential Equations , 1992 .

[38]  J. Tsinias A local stabilization theorem for interconnected systems , 1992 .

[39]  Jean-Pierre Aubin,et al.  Viability theory , 1991 .

[40]  John Tsinias,et al.  Sufficient lyapunov-like conditions for stabilization , 1989, Math. Control. Signals Syst..

[41]  Eduardo Sontag A universal construction of Artstein's theorem on nonlinear stabilization , 1989 .

[42]  A. Isidori,et al.  New results and examples in nonlinear feedback stabilization , 1989 .

[43]  John Tsinias A Lyapunov description of stability in control systems , 1988 .

[44]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[45]  G. Barles,et al.  Exit Time Problems in Optimal Control and Vanishing Viscosity Method , 1988 .

[46]  H. Ishii A simple, direct proof of uniqueness for solutions of the hamilton-jacobi equations of eikonal type , 1987 .

[47]  Z. Artstein Stabilization with relaxed controls , 1983 .

[48]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[49]  P. Lions Generalized Solutions of Hamilton-Jacobi Equations , 1982 .

[50]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[51]  On the points of multiplicity of monotone operators , 1978 .

[52]  A. Fuller,et al.  Stability of Motion , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[53]  J. L. Massera Contributions to Stability Theory , 1956 .

[54]  E. Michael Continuous Selections. I , 1956 .

[55]  I. Holopainen Riemannian Geometry , 1927, Nature.

[56]  P J Fox,et al.  THE FOUNDATIONS OF MECHANICS. , 1918, Science.