Regularity properties of the distance functions to conjugate and cut loci for viscosity solutions of Hamilton-Jacobi equations and applications in Riemannian geometry
暂无分享,去创建一个
[1] C. Villani,et al. Regularity of optimal transport in curved geometry: The nonfocal case , 2010 .
[2] Cédric Villani,et al. On the Ma–Trudinger–Wang curvature on surfaces , 2010 .
[3] P. Nistri,et al. On Discontinuous Differential Equations , 2009 .
[4] A. Figalli,et al. Continuity of optimal transport maps and convexity of injectivity domains on small deformations of 𝕊2 , 2009 .
[5] C. Villani. Optimal Transport: Old and New , 2008 .
[6] Ana Cannas da Silva,et al. Lectures on Symplectic Geometry , 2008 .
[7] Cédric Villani,et al. An Approximation Lemma about the Cut Locus, with Applications in Optimal Transport Theory , 2008 .
[8] L. Rifford. On Viscosity Solutions of Certain Hamilton–Jacobi Equations: Regularity Results and Generalized Sard's Theorems , 2008 .
[9] Louis Nirenberg,et al. Regularity of the distance function to the boundary , 2005 .
[10] A. Agrachev. Geometry of Optimal Control Problems and Hamiltonian Systems , 2005, math/0506197.
[11] P. Cannarsa,et al. Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control , 2004 .
[12] Ludovic Rifford,et al. A Morse-Sard theorem for the distance function on Riemannian manifolds , 2004 .
[13] Zdzisław Denkowski,et al. Set-Valued Analysis , 2021 .
[14] 高倉 樹. 書評 Ana Cannas da Silva: Lectures on Symplectic Geometry(Lecture Notes in Math.,1764) , 2003 .
[15] Louis Nirenberg,et al. The distance function to the boundary, Finsler geometry, and the singular set of viscosity solutions of some Hamilton‐Jacobi equations , 2003, math/0306122.
[16] C. Pignotti,et al. Rectifiability results for singular and conjugate points of optimal exit time problems , 2002 .
[17] Albert Fathi,et al. Weak KAM Theorem in Lagrangian Dynamics , 2001 .
[18] Ludovic Rifford,et al. Existence of Lipschitz and Semiconcave Control-Lyapunov Functions , 2000, SIAM J. Control. Optim..
[19] Jin-ichi Itoh,et al. The Lipschitz continuity of the distance function to the cut locus , 2000 .
[20] Francis H. Clarke,et al. Feedback Stabilization and Lyapunov Functions , 2000, SIAM J. Control. Optim..
[21] Yu. S. Ledyaev,et al. A Lyapunov characterization of robust stabilization , 1999 .
[22] Eduardo Sontag. Stability and stabilization: discontinuities and the effect of disturbances , 1999, math/9902026.
[23] Jean-Michel Coron,et al. On the stabilization of some nonlinear control systems: results, tools, and applications , 1999 .
[24] A. Teel,et al. A Smooth Lyapunov Function from a Class-kl Estimate Involving Two Positive Semideenite Functions , 1999 .
[25] Andrew R. Teel,et al. On assigning the derivative of a disturbance attenuation CLF , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).
[26] Yu. S. Ledyaev,et al. Asymptotic Stability and Smooth Lyapunov Functions , 1998 .
[27] Cyrille Imbert,et al. Les fonctions d'appui de la Jacobienne généralisée de Clarke et de son enveloppe plénière , 1998 .
[28] Yu. S. Ledyaev,et al. Nonsmooth analysis and control theory , 1998 .
[29] R. Freeman,et al. Robust Nonlinear Control Design: State-Space and Lyapunov Techniques , 1996 .
[30] Randy A. Freeman,et al. Robust Nonlinear Control Design , 1996 .
[31] Yuandan Lin,et al. A Smooth Converse Lyapunov Theorem for Robust Stability , 1996 .
[32] Randy A. Freeman,et al. Backstepping Design with Nonsmooth Nonlinearities , 1995 .
[33] G. Barles. Solutions de viscosité des équations de Hamilton-Jacobi , 1994 .
[34] John Tsinias,et al. An extension of Artstein's theorem on stabilization by using ordinary feedback integrators , 1993 .
[35] L. Rosier. Etude de quelques problèmes de stabilisation , 1993 .
[36] Giovanni Alberti,et al. On the singularities of convex functions , 1992 .
[37] K. Deimling. Multivalued Differential Equations , 1992 .
[38] J. Tsinias. A local stabilization theorem for interconnected systems , 1992 .
[39] Jean-Pierre Aubin,et al. Viability theory , 1991 .
[40] John Tsinias,et al. Sufficient lyapunov-like conditions for stabilization , 1989, Math. Control. Signals Syst..
[41] Eduardo Sontag. A universal construction of Artstein's theorem on nonlinear stabilization , 1989 .
[42] A. Isidori,et al. New results and examples in nonlinear feedback stabilization , 1989 .
[43] John Tsinias. A Lyapunov description of stability in control systems , 1988 .
[44] Aleksej F. Filippov,et al. Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.
[45] G. Barles,et al. Exit Time Problems in Optimal Control and Vanishing Viscosity Method , 1988 .
[46] H. Ishii. A simple, direct proof of uniqueness for solutions of the hamilton-jacobi equations of eikonal type , 1987 .
[47] Z. Artstein. Stabilization with relaxed controls , 1983 .
[48] F. Clarke. Optimization And Nonsmooth Analysis , 1983 .
[49] P. Lions. Generalized Solutions of Hamilton-Jacobi Equations , 1982 .
[50] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[51] On the points of multiplicity of monotone operators , 1978 .
[52] A. Fuller,et al. Stability of Motion , 1976, IEEE Transactions on Systems, Man, and Cybernetics.
[53] J. L. Massera. Contributions to Stability Theory , 1956 .
[54] E. Michael. Continuous Selections. I , 1956 .
[55] I. Holopainen. Riemannian Geometry , 1927, Nature.
[56] P J Fox,et al. THE FOUNDATIONS OF MECHANICS. , 1918, Science.