Type IV secretion in Gram‐negative and Gram‐positive bacteria

Type IV secretion systems (T4SSs) are versatile multiprotein nanomachines spanning the entire cell envelope in Gram‐negative and Gram‐positive bacteria. They play important roles through the contact‐dependent secretion of effector molecules into eukaryotic hosts and conjugative transfer of mobile DNA elements as well as contact‐independent exchange of DNA with the extracellular milieu. In the last few years, many details on the molecular mechanisms of T4SSs have been elucidated. Exciting structures of T4SS complexes from Escherichia coli plasmids R388 and pKM101, Helicobacter pylori and Legionella pneumophila have been solved. The structure of the F‐pilus was also reported and surprisingly revealed a filament composed of pilin subunits in 1:1 stoichiometry with phospholipid molecules. Many new T4SSs have been identified and characterized, underscoring the structural and functional diversity of this secretion superfamily. Complex regulatory circuits also have been shown to control T4SS machine production in response to host cell physiological status or a quorum of bacterial recipient cells in the vicinity. Here, we summarize recent advances in our knowledge of ‘paradigmatic’ and emerging systems, and further explore how new basic insights are aiding in the design of strategies aimed at suppressing T4SS functions in bacterial infections and spread of antimicrobial resistances.

[1]  E. Rocha,et al.  Key components of the eight classes of type IV secretion systems involved in bacterial conjugation or protein secretion , 2014, Nucleic acids research.

[2]  R. Isberg,et al.  Targeting of host Rab GTPase function by the intravacuolar pathogen Legionella pneumophila. , 2006, Developmental cell.

[3]  S. Wessler,et al.  c-Src and c-Abl kinases control hierarchic phosphorylation and function of the CagA effector protein in Western and East Asian Helicobacter pylori strains. , 2012, The Journal of clinical investigation.

[4]  T. A. Nagy,et al.  Regulation of gastric carcinogenesis by Helicobacter pylori virulence factors. , 2008, Cancer research.

[5]  E. Cascales,et al.  Agrobacterium ParA/MinD‐like VirC1 spatially coordinates early conjugative DNA transfer reactions , 2007, The EMBO journal.

[6]  J. Gorvel,et al.  In search of Brucella abortus type IV secretion substrates: screening and identification of four proteins translocated into host cells through VirB system , 2011, Cellular microbiology.

[7]  S. Backert,et al.  A helical RGD motif promoting cell adhesion: crystal structures of the Helicobacter pylori type IV secretion system pilus protein CagL. , 2013, Structure.

[8]  Naomi Ohnishi,et al.  Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse , 2008, Proceedings of the National Academy of Sciences.

[9]  Bruno S. Sobral,et al.  An Anomalous Type IV Secretion System in Rickettsia Is Evolutionarily Conserved , 2009, PloS one.

[10]  N. Goessweiner-Mohr,et al.  DNA-Binding Proteins Regulating pIP501 Transfer and Replication , 2016, Front. Mol. Biosci..

[11]  W. Fang,et al.  Roles of the Putative Type IV-like Secretion System Key Component VirD4 and PrsA in Pathogenesis of Streptococcus suis Type 2 , 2016, Front. Cell. Infect. Microbiol..

[12]  M. Blaser,et al.  Molecular and Structural Analysis of the Helicobacter pylori cag Type IV Secretion System Core Complex , 2016, mBio.

[13]  C. Baron,et al.  An In Vivo High-Throughput Screening Approach Targeting the Type IV Secretion System Component VirB8 Identified Inhibitors of Brucella abortus 2308 Proliferation , 2010, Infection and Immunity.

[14]  J. Lavigne,et al.  Type IV secretion and Brucella virulence. , 2002, Veterinary microbiology.

[15]  P. Luciw,et al.  NOD1/NOD2 signaling links ER stress with inflammation , 2016, Nature.

[16]  Eric P. Skaar,et al.  Pathogenic Helicobacter pylori Strains Translocate DNA and Activate TLR9 via the Cancer-Associated cag Type IV Secretion System , 2016, Oncogene.

[17]  E. Orlova,et al.  Structure of a Type IV Secretion System Core Complex , 2009, Science.

[18]  S. Backert,et al.  DNA transfer in the gastric pathogen Helicobacter pylori , 2014, Journal of Gastroenterology.

[19]  C. Press Cell host & microbe , 2007 .

[20]  S. Bentley,et al.  High Rates of Homologous Recombination in the Mite Endosymbiont and Opportunistic Human Pathogen Orientia tsutsugamushi , 2010, PLoS neglected tropical diseases.

[21]  E. Cascales,et al.  Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion , 2004, Molecular microbiology.

[22]  Jiaqi Tang,et al.  Role of a type IV-like secretion system of Streptococcus suis 2 in the development of streptococcal toxic shock syndrome. , 2011, The Journal of infectious diseases.

[23]  A. Grossman,et al.  The Bifunctional Cell Wall Hydrolase CwlT Is Needed for Conjugation of the Integrative and Conjugative Element ICEBs1 in Bacillus subtilis and B. anthracis , 2014, Journal of bacteriology.

[24]  Christoph Dehio,et al.  Conjugative DNA transfer into human cells by the VirB/VirD4 type IV secretion system of the bacterial pathogen Bartonella henselae , 2011, Proceedings of the National Academy of Sciences.

[25]  Roland Hartig,et al.  Helicobacter exploits integrin for type IV secretion and kinase activation , 2007, Nature.

[26]  R. Heinzen,et al.  Coxiella type IV secretion and cellular microbiology. , 2009, Current opinion in microbiology.

[27]  Günther Koraimann,et al.  Social behavior and decision making in bacterial conjugation , 2014, Front. Cell. Infect. Microbiol..

[28]  H. Hilbi,et al.  Subversion of Retrograde Trafficking by Translocated Pathogen Effectors. , 2016, Trends in microbiology.

[29]  Yufei Wang,et al.  Type IV secretion system of Brucella spp. and its effectors , 2015, Front. Cell. Infect. Microbiol..

[30]  M. Heidtman,et al.  The Legionella pneumophila replication vacuole: making a cosy niche inside host cells , 2009, Nature Reviews Microbiology.

[31]  Y. Rikihisa,et al.  Characterization and Transcriptional Analysis of Gene Clusters for a Type IV Secretion Machinery in Human Granulocytic and Monocytic Ehrlichiosis Agents , 2002, Infection and Immunity.

[32]  Joseph J. Gillespie,et al.  Phylogenomics Reveals a Diverse Rickettsiales Type IV Secretion System , 2010, Infection and Immunity.

[33]  T. Zusman,et al.  The Icm/Dot type-IV secretion systems of Legionella pneumophila and Coxiella burnetii. , 2005, FEMS microbiology reviews.

[34]  C. Guzmán-Verri,et al.  Activation of Rho and Rab GTPases dissociates Brucella abortus internalization from intracellular trafficking , 2002, Cellular microbiology.

[35]  L. Frost,et al.  F factor conjugation is a true type IV secretion system. , 2003, FEMS microbiology letters.

[36]  G. Dunny,et al.  Extrachromosomal and mobile elements in enterococci: transmission, maintenance, and epidemiology , 2014 .

[37]  C. Obuse,et al.  Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity , 2007, Nature.

[38]  Christoph Dehio,et al.  A bipartite signal mediates the transfer of type IV secretion substrates of Bartonella henselae into human cells. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Dena Lyras,et al.  The conjugation protein TcpC from Clostridium perfringens is structurally related to the type IV secretion system protein VirB8 from Gram‐negative bacteria , 2012, Molecular microbiology.

[40]  Günther Koraimann,et al.  Regulation of bacterial conjugation: balancing opportunity with adversity. , 2010, Future microbiology.

[41]  E. Shaw,et al.  Polar localization of the Coxiella burnetii type IVB secretion system. , 2010, FEMS microbiology letters.

[42]  Y. Rikihisa,et al.  Anaplasma phagocytophilum AnkA secreted by type IV secretion system is tyrosine phosphorylated by Abl‐1 to facilitate infection † , 2007, Cellular microbiology.

[43]  E. Zechner,et al.  Common Requirement for the Relaxosome of Plasmid R1 in Multiple Activities of the Conjugative Type IV Secretion System , 2014, Journal of bacteriology.

[44]  W. Keller,et al.  Targeting Type IV Secretion System Proteins to Combat Multidrug-Resistant Gram-positive Pathogens , 2017, The Journal of infectious diseases.

[45]  L. Johannes,et al.  The Legionella effector RidL inhibits retrograde trafficking to promote intracellular replication. , 2013, Cell host & microbe.

[46]  M. Topf,et al.  Structure of a translocation signal domain mediating conjugative transfer by type IV secretion systems , 2013, Molecular microbiology.

[47]  Multiple Pathways of Plasmid DNA Transfer in Helicobacter pylori , 2012, PloS one.

[48]  R. Isberg,et al.  Cell biology of Legionella pneumophila. , 1999, Current opinion in microbiology.

[49]  G. Waksman,et al.  A large domain swap in the VirB11 ATPase of Brucella suis leaves the hexameric assembly intact. , 2006, Journal of molecular biology.

[50]  Huanming Yang,et al.  The Trw Type IV Secretion System of Bartonella Mediates Host-Specific Adhesion to Erythrocytes , 2010, PLoS pathogens.

[51]  P. Christie The Mosaic Type IV Secretion Systems , 2016, EcoSal Plus.

[52]  J. Celli,et al.  Brucella Intracellular Replication Requires Trafficking Through the Late Endosomal/Lysosomal Compartment , 2008, Traffic.

[53]  R. Birner-Gruenberger,et al.  Structure of the double-stranded DNA-binding type IV secretion protein TraN from Enterococcus. , 2014, Acta crystallographica. Section D, Biological crystallography.

[54]  K. Stingl,et al.  Two steps away from novelty – principles of bacterial DNA uptake , 2011, Molecular microbiology.

[55]  R. Haas,et al.  Genetic competence in Helicobacter pylori: mechanisms and biological implications. , 2000, Research in microbiology.

[56]  Jiaqi Tang,et al.  Pathogenic Streptococcus strains employ novel escape strategy to inhibit bacteriostatic effect mediated by mammalian peptidoglycan recognition protein , 2017, Cellular microbiology.

[57]  C. Baron,et al.  Structural Analysis and Inhibition of TraE from the pKM101 Type IV Secretion System* , 2016, The Journal of Biological Chemistry.

[58]  W. Reygaert,et al.  Gram Negative Bacteria , 2019 .

[59]  H. Agaisse,et al.  Host Pathways Important for Coxiella burnetii Infection Revealed by Genome-Wide RNA Interference Screening , 2013, mBio.

[60]  H. Hilbi,et al.  Anchors for Effectors: Subversion of Phosphoinositide Lipids by Legionella , 2011, Front. Microbio..

[61]  T. Bächi,et al.  Conjugational junctions: morphology of specific contacts in conjugating Escherichia coli bacteria. , 1991, Journal of structural biology.

[62]  N. Goessweiner-Mohr,et al.  TraG Encoded by the pIP501 Type IV Secretion System Is a Two-Domain Peptidoglycan-Degrading Enzyme Essential for Conjugative Transfer , 2013, Journal of bacteriology.

[63]  Walter Keller,et al.  The 2.5 Å Structure of the Enterococcus Conjugation Protein TraM resembles VirB8 Type IV Secretion Proteins , 2012, The Journal of Biological Chemistry.

[64]  Y. Rikihisa Molecular Pathogenesis of Ehrlichia chaffeensis Infection. , 2015, Annual review of microbiology.

[65]  C. Roy,et al.  Ankyrin Repeat Proteins Comprise a Diverse Family of Bacterial Type IV Effectors , 2008, Science.

[66]  J. Schildbach,et al.  Assembly and mechanisms of bacterial type IV secretion machines , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[67]  C. Sasakawa,et al.  Grb2 is a key mediator of helicobacter pylori CagA protein activities. , 2002, Molecular cell.

[68]  M. Clarke,et al.  Dynamic properties of Legionella‐containing phagosomes in Dictyostelium amoebae , 2005, Cellular microbiology.

[69]  D. Toomre,et al.  The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor , 2006, Nature Cell Biology.

[70]  Shireen A. Sarraf,et al.  Effector Protein Cig2 Decreases Host Tolerance of Infection by Directing Constitutive Fusion of Autophagosomes with the Coxiella-Containing Vacuole , 2016, mBio.

[71]  G. Waksman,et al.  Structural Biology of Bacterial Type IV Secretion Systems. , 2015, Annual review of biochemistry.

[72]  T. Zusman,et al.  Functional Similarities between the icm/dot Pathogenesis Systems of Coxiella burnetii and Legionella pneumophila , 2003, Infection and Immunity.

[73]  H. Hilbi,et al.  The Legionella pneumophila phosphatidylinositol‐4 phosphate‐binding type IV substrate SidC recruits endoplasmic reticulum vesicles to a replication‐permissive vacuole , 2008, Cellular microbiology.

[74]  Jennifer A Cundiff,et al.  Postreplication Roles of the Brucella VirB Type IV Secretion System Uncovered via Conditional Expression of the VirB11 ATPase , 2016, mBio.

[75]  R. Goody,et al.  Covalent coercion by Legionella pneumophila. , 2011, Cell host & microbe.

[76]  P. Christie,et al.  Genetic complementation analysis of the Agrobacterium tumefaciens virB operon: virB2 through virB11 are essential virulence genes , 1994, Journal of bacteriology.

[77]  W. Keller,et al.  Conjugative type IV secretion in Gram-positive pathogens: TraG, a lytic transglycosylase and endopeptidase, interacts with translocation channel protein TraM. , 2017, Plasmid.

[78]  M. Blaser,et al.  A Specific A/T Polymorphism in Western Tyrosine Phosphorylation B-Motifs Regulates Helicobacter pylori CagA Epithelial Cell Interactions , 2015, PLoS pathogens.

[79]  T. Meyer,et al.  ALPK1 and TIFA dependent innate immune response triggered by the Helicobacter pylori type IV secretion system , 2017, bioRxiv.

[80]  C. Dehio,et al.  A Translocation Motif in Relaxase TrwC Specifically Affects Recruitment by Its Conjugative Type IV Secretion System , 2013, Journal of bacteriology.

[81]  Y. Mao,et al.  Structural basis for substrate recognition by a unique Legionella phosphoinositide phosphatase , 2012, Proceedings of the National Academy of Sciences.

[82]  Gabriel Waksman,et al.  Structure of the outer membrane complex of a type IV secretion system , 2009, Nature.

[83]  C. Dehio,et al.  The Conjugative Relaxase TrwC Promotes Integration of Foreign DNA in the Human Genome , 2017, Applied and Environmental Microbiology.

[84]  E. Rocha,et al.  Evolution of Conjugation and Type IV Secretion Systems , 2012, Molecular biology and evolution.

[85]  PrgU: a suppressor of sex pheromone toxicity in Enterococcus faecalis , 2017, Molecular microbiology.

[86]  E Lanka,et al.  Conjugative Pili of IncP Plasmids, and the Ti Plasmid T Pilus Are Composed of Cyclic Subunits* , 1999, The Journal of Biological Chemistry.

[87]  C. Roy,et al.  Inhibition of pathogen-induced apoptosis by a Coxiella burnetii type IV effector protein , 2010, Proceedings of the National Academy of Sciences.

[88]  P. Christie,et al.  The expanding bacterial type IV secretion lexicon. , 2013, Research in microbiology.

[89]  S. Molin,et al.  Secreted single-stranded DNA is involved in the initial phase of biofilm formation by Neisseria gonorrhoeae. , 2014, Environmental microbiology.

[90]  E. Kuipers,et al.  The dprA gene is required for natural transformation of Helicobacter pylori. , 2000, FEMS immunology and medical microbiology.

[91]  T. Rudel,et al.  Anaplasma phagocytophilum Ats-1 Is Imported into Host Cell Mitochondria and Interferes with Apoptosis Induction , 2010, PLoS pathogens.

[92]  E. Orlova,et al.  Structure of a bacterial type IV secretion core complex at subnanometre resolution , 2013, The EMBO journal.

[93]  R. Isberg,et al.  The Legionella Effector RavZ Inhibits Host Autophagy Through Irreversible Atg8 Deconjugation , 2012, Science.

[94]  A. Economou,et al.  Protein Secretion , 2020, Methods in Molecular Biology.

[95]  Nicolas Carraro,et al.  Biology of Three ICE Families: SXT/R391, ICEBs1, and ICESt1/ICESt3. , 2014, Microbiology spectrum.

[96]  H. Nagai,et al.  Type IVB Secretion Systems of Legionella and Other Gram-Negative Bacteria , 2011, Front. Microbio..

[97]  P. Guye,et al.  Fic domain‐catalyzed adenylylation: Insight provided by the structural analysis of the type IV secretion system effector BepA , 2011, Protein science : a publication of the Protein Society.

[98]  V. Kempf,et al.  Bartonella spp. - a chance to establish One Health concepts in veterinary and human medicine , 2016, Parasites & Vectors.

[99]  E. Orlova,et al.  Structure of a type IV secretion system , 2014, Nature.

[100]  S. Savvides,et al.  Crystal structure of the hexameric traffic ATPase of the Helicobacter pylori type IV secretion system. , 2000, Molecular cell.

[101]  M. Adams,et al.  Natural Competence in the Hyperthermophilic Archaeon Pyrococcus furiosus Facilitates Genetic Manipulation: Construction of Markerless Deletions of Genes Encoding the Two Cytoplasmic Hydrogenases , 2011, Applied and Environmental Microbiology.

[102]  X. Bui,et al.  Native structure of a type IV secretion system core complex essential for Legionella pathogenesis , 2014, Proceedings of the National Academy of Sciences.

[103]  S. Wessler,et al.  A novel basolateral type IV secretion model for the CagA oncoprotein of Helicobacter pylori , 2017, Microbial cell.

[104]  E. Orlova,et al.  Use of chimeric type IV secretion systems to define contributions of outer membrane subassemblies for contact‐dependent translocation , 2017, Molecular microbiology.

[105]  A. Grossman,et al.  Integrative and Conjugative Elements (ICEs): What They Do and How They Work. , 2015, Annual review of genetics.

[106]  Y. Rikihisa Subversion of RAB5-regulated autophagy by the intracellular pathogen Ehrlichia chaffeensis , 2017, Small GTPases.

[107]  C. Porter,et al.  The peptidoglycan hydrolase TcpG is required for efficient conjugative transfer of pCW3 in Clostridium perfringens. , 2012, Plasmid.

[108]  J. Whisstock,et al.  TcpM: a novel relaxase that mediates transfer of large conjugative plasmids from Clostridium perfringens , 2016, Molecular microbiology.

[109]  J. Schildbach,et al.  Conjugative DNA Transfer Is Enhanced by Plasmid R1 Partitioning Proteins , 2016, Frontiers in Molecular Biosciences.

[110]  C. Vandenbroucke-Grauls,et al.  comH, a Novel Gene Essential for Natural Transformation of Helicobacter pylori , 2000, Journal of bacteriology.

[111]  K. Walldén,et al.  Structure of the VirB4 ATPase, alone and bound to the core complex of a type IV secretion system , 2012, Proceedings of the National Academy of Sciences.

[112]  R. Haas,et al.  Topology and membrane interaction of Helicobacter pylori ComB proteins involved in natural transformation competence. , 2003, International journal of medical microbiology : IJMM.

[113]  Ariel B. Lindner,et al.  Neurokinin 1 Receptor Antagonism as a Possible Therapy for Alcoholism , 2008, Science.

[114]  Xin Lu,et al.  Structure of the Helicobacter pylori CagA oncoprotein bound to the human tumor suppressor ASPP2 , 2014, Proceedings of the National Academy of Sciences.

[115]  G. Waksman,et al.  Agrobacterium VirB10 domain requirements for type IV secretion and T pilus biogenesis , 2009, Molecular microbiology.

[116]  G. Waksman,et al.  A comprehensive guide to pilus biogenesis in Gram-negative bacteria , 2017, Nature Reviews Microbiology.

[117]  C. Dehio Bartonella–host-cell interactions and vascular tumour formation , 2005, Nature Reviews Microbiology.

[118]  Fernando de la Cruz,et al.  Conjugative DNA metabolism in Gram-negative bacteria. , 2010, FEMS microbiology reviews.

[119]  E. Cascales,et al.  Definition of a Bacterial Type IV Secretion Pathway for a DNA Substrate , 2004, Science.

[120]  J. Celli The changing nature of the Brucella‐containing vacuole , 2015, Cellular microbiology.

[121]  M. Swanson,et al.  Inhibition of Host Vacuolar H+-ATPase Activity by a Legionella pneumophila Effector , 2010, PLoS pathogens.

[122]  Nina Coombs,et al.  Helicobacter pylori modulates host cell responses by CagT4SS-dependent translocation of an intermediate metabolite of LPS inner core heptose biosynthesis , 2017, PLoS pathogens.

[123]  N. Goessweiner-Mohr,et al.  Conjugative type IV secretion systems in Gram-positive bacteria , 2013, Plasmid.

[124]  G. Waksman,et al.  Cryo-EM Structure of a Relaxase Reveals the Molecular Basis of DNA Unwinding during Bacterial Conjugation , 2017, Cell.

[125]  H. Hilbi,et al.  Legionella pneumophila Exploits PI(4)P to Anchor Secreted Effector Proteins to the Replicative Vacuole , 2006, PLoS pathogens.

[126]  C. G. Robinson,et al.  Attachment and fusion of endoplasmic reticulum with vacuoles containing Legionella pneumophila , 2006, Cellular microbiology.

[127]  H. Seifert,et al.  Mobile DNA in the Pathogenic Neisseria. , 2015, Microbiology spectrum.

[128]  J. V. van Dijl,et al.  Identification of VceA and VceC, two members of the VjbR regulon that are translocated into macrophages by the Brucella type IV secretion system , 2008, Molecular microbiology.

[129]  Petra L. Kohler,et al.  Mating Pair Formation Homologue TraG Is a Variable Membrane Protein Essential for Contact-Independent Type IV Secretion of Chromosomal DNA by Neisseria gonorrhoeae , 2013, Journal of bacteriology.

[130]  M. L. Hartung,et al.  Life in the human stomach: persistence strategies of the bacterial pathogen Helicobacter pylori , 2013, Nature Reviews Microbiology.

[131]  R. Heinzen,et al.  Vasodilator-Stimulated Phosphoprotein Activity Is Required for Coxiella burnetii Growth in Human Macrophages , 2016, PLoS pathogens.

[132]  G. Schneider,et al.  Identification of E-cadherin signature motifs functioning as cleavage sites for Helicobacter pylori HtrA , 2016, Scientific Reports.

[133]  S. Wessler,et al.  Helicobacter pylori Employs a Unique Basolateral Type IV Secretion Mechanism for CagA Delivery. , 2017, Cell host & microbe.

[134]  D. Zamboni,et al.  Inhibition of inflammasome activation by Coxiella burnetii type IV secretion system effector IcaA , 2015, Nature Communications.

[135]  D. Clewell,et al.  Conjugation in Gram-Positive Bacteria , 2004 .

[136]  M. Horwitz Formation of a novel phagosome by the Legionnaires' disease bacterium (Legionella pneumophila) in human monocytes , 1983, The Journal of experimental medicine.

[137]  C. Dehio,et al.  New insights into the role of Bartonella effector proteins in pathogenesis. , 2015, Current opinion in microbiology.

[138]  H. Hilbi,et al.  Rab1 Guanine Nucleotide Exchange Factor SidM Is a Major Phosphatidylinositol 4-Phosphate-binding Effector Protein of Legionella pneumophila , 2009, Journal of Biological Chemistry.

[139]  R. Goody,et al.  High‐affinity binding of phosphatidylinositol 4‐phosphate by Legionella pneumophila DrrA , 2010, EMBO reports.

[140]  G. Waksman,et al.  An Agrobacterium VirB10 Mutation Conferring a Type IV Secretion System Gating Defect , 2011, Journal of bacteriology.

[141]  Christoph Dehio,et al.  Bartonella entry mechanisms into mammalian host cells , 2012, Cellular microbiology.

[142]  Y. Rikihisa,et al.  Investigating interference with apoptosis induction by bacterial proteins. , 2014, Methods in molecular biology.

[143]  Shira L. Broschat,et al.  Identification of Anaplasma marginale Type IV Secretion System Effector Proteins , 2011, PloS one.

[144]  E. Martínez-Romero,et al.  Genomes of Candidatus Wolbachia bourtzisii wDacA and Candidatus Wolbachia pipientis wDacB from the Cochineal Insect Dactylopius coccus (Hemiptera: Dactylopiidae) , 2016, G3: Genes, Genomes, Genetics.

[145]  Gabriel Waksman,et al.  Recent advances in the structural and molecular biology of type IV secretion systems , 2014, Current opinion in structural biology.

[146]  Nam Ki Lee,et al.  Architecture of the type IV coupling protein complex of Legionella pneumophila , 2017, Nature Microbiology.

[147]  H. Hilbi,et al.  Live-Cell Imaging of Phosphoinositide Dynamics and Membrane Architecture during Legionella Infection , 2014, mBio.

[148]  Zhao-Qing Luo,et al.  Large-scale identification and translocation of type IV secretion substrates by Coxiella burnetii , 2010, Proceedings of the National Academy of Sciences.

[149]  P. Christie,et al.  Biological Diversity of Prokaryotic Type IV Secretion Systems , 2009, Microbiology and Molecular Biology Reviews.

[150]  S. Backert,et al.  Subversion of host kinases: a key network in cellular signaling hijacked by Helicobacter pylori CagA , 2017, Molecular microbiology.

[151]  H. Hilbi,et al.  Icm/Dot‐dependent inhibition of phagocyte migration by Legionella is antagonized by a translocated Ran GTPase activator , 2014, Cellular microbiology.

[152]  J. Rood,et al.  The Tcp conjugation system of Clostridium perfringens. , 2017, Plasmid.

[153]  J. Mege,et al.  Virulent Brucella abortus Prevents Lysosome Fusion and Is Distributed within Autophagosome-Like Compartments , 1998, Infection and Immunity.

[154]  C. Dehio,et al.  Transfer of R388 Derivatives by a Pathogenesis-Associated Type IV Secretion System into both Bacteria and Human Cells , 2011, Journal of bacteriology.

[155]  G. Jensen,et al.  Polar delivery of Legionella type IV secretion system substrates is essential for virulence , 2017, Proceedings of the National Academy of Sciences.

[156]  F. de la Cruz,et al.  Bacterial conjugation: a potential tool for genomic engineering. , 2005, Research in microbiology.

[157]  Beiwen Zheng,et al.  GI-type T4SS-mediated horizontal transfer of the 89K pathogenicity island in epidemic Streptococcus suis serotype 2 , 2011, Molecular microbiology.

[158]  T. Leonard,et al.  Towards understanding the molecular basis of bacterial DNA segregation , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[159]  Pratibha Sharma,et al.  Peptide Nucleic Acid Knockdown and Intra-host Cell Complementation of Ehrlichia Type IV Secretion System Effector , 2017, Front. Cell. Infect. Microbiol..

[160]  S. Gray-Owen,et al.  TIFA Signaling in Gastric Epithelial Cells Initiates the cag Type 4 Secretion System-Dependent Innate Immune Response to Helicobacter pylori Infection , 2017, mBio.

[161]  L. Kohler,et al.  Biogenesis of the lysosome-derived vacuole containing Coxiella burnetii. , 2015, Microbes and infection.

[162]  A. Louche,et al.  Structural insights into Helicobacter pylori oncoprotein CagA interaction with β1 integrin , 2012, Proceedings of the National Academy of Sciences.

[163]  Jin-Town Wang,et al.  Characterization of a ComE3 Homologue Essential for DNA Transformation in Helicobacter pylori , 2003, Infection and Immunity.

[164]  E. Egelman,et al.  The structure of F-pili. , 2009, Journal of molecular biology.

[165]  Fernando de la Cruz,et al.  The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPase , 2001, Nature.

[166]  Terry K. Smith,et al.  Structure of the Bacterial Sex F Pilus Reveals an Assembly of a Stoichiometric Protein-Phospholipid Complex , 2016, Cell.

[167]  G. Waksman,et al.  VirB2 and VirB5 proteins: specialized adhesins in bacterial type-IV secretion systems? , 2008, Trends in microbiology.

[168]  J. Gaddy,et al.  Peptidomimetic Small Molecules Disrupt Type IV Secretion System Activity in Diverse Bacterial Pathogens , 2016, mBio.

[169]  Jin Ju Lee,et al.  Interplay between Clathrin and Rab5 Controls the Early Phagocytic Trafficking and Intracellular Survival of Brucella abortus within HeLa cells* , 2013, The Journal of Biological Chemistry.

[170]  J. Glover,et al.  Relaxosome function and conjugation regulation in F‐like plasmids – a structural biology perspective , 2012, Molecular microbiology.

[171]  K. Stingl,et al.  Composite system mediates two-step DNA uptake into Helicobacter pylori , 2009, Proceedings of the National Academy of Sciences.

[172]  C. Roy,et al.  Autophagy Evasion and Endoplasmic Reticulum Subversion: The Yin and Yang of Legionella Intracellular Infection. , 2016, Annual review of microbiology.

[173]  Melanie B. Berkmen,et al.  Biology of ICEBs1, an integrative and conjugative element in Bacillus subtilis. , 2016, Plasmid.

[174]  W. Zimmermann,et al.  Helicobacter pylori exploits human CEACAMs via HopQ for adherence and translocation of CagA , 2016, Nature Microbiology.

[175]  R. Haas,et al.  Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin‐8 , 2001 .

[176]  Matthias Mann,et al.  Host cell interactome of tyrosine-phosphorylated bacterial proteins. , 2009, Cell host & microbe.

[177]  H. Newton,et al.  Coxiella burnetii: turning hostility into a home , 2015, Cellular microbiology.

[178]  R. Heinzen,et al.  Coxiella burnetii inhabits a cholesterol‐rich vacuole and influences cellular cholesterol metabolism , 2006, Cellular microbiology.

[179]  John Bertin,et al.  Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island , 2004, Nature Immunology.

[180]  R. Kahn,et al.  A Bacterial Guanine Nucleotide Exchange Factor Activates ARF on Legionella Phagosomes , 2002, Science.

[181]  R. Heinzen,et al.  Lounging in a lysosome: the intracellular lifestyle of Coxiella burnetii , 2007, Cellular microbiology.

[182]  A. Bausch,et al.  Activation of Ran GTPase by a Legionella Effector Promotes Microtubule Polymerization, Pathogen Vacuole Motility and Infection , 2013, PLoS pathogens.

[183]  Fernando de la Cruz,et al.  The diversity of conjugative relaxases and its application in plasmid classification. , 2009, FEMS microbiology reviews.

[184]  Christoph Dehio,et al.  New perspectives into bacterial DNA transfer to human cells. , 2012, Trends in microbiology.

[185]  Robert Child,et al.  Brucella Modulates Secretory Trafficking via Multiple Type IV Secretion Effector Proteins , 2013, PLoS pathogens.

[186]  Tal Pupko,et al.  Computational modeling and experimental validation of the Legionella and Coxiella virulence-related type-IVB secretion signal , 2013, Proceedings of the National Academy of Sciences.

[187]  Yuqing Chen,et al.  Enterococcus faecalis PrgJ, a VirB4-Like ATPase, Mediates pCF10 Conjugative Transfer through Substrate Binding , 2012, Journal of bacteriology.

[188]  K. L. Frank,et al.  Enterococcus faecalis pCF10‐encoded surface proteins PrgA, PrgB (aggregation substance) and PrgC contribute to plasmid transfer, biofilm formation and virulence , 2015, Molecular microbiology.

[189]  Takeshi Azuma,et al.  SHP-2 Tyrosine Phosphatase as an Intracellular Target of Helicobacter pylori CagA Protein , 2001, Science.

[190]  P. Christie,et al.  PrgK, a Multidomain Peptidoglycan Hydrolase, Is Essential for Conjugative Transfer of the Pheromone-Responsive Plasmid pCF10 , 2013, Journal of bacteriology.

[191]  Yuqing Chen,et al.  The All-Alpha Domains of Coupling Proteins from the Agrobacterium tumefaciens VirB/VirD4 and Enterococcus faecalis pCF10-Encoded Type IV Secretion Systems Confer Specificity to Binding of Cognate DNA Substrates , 2015, Journal of bacteriology.

[192]  S. Savvides,et al.  VirB11 ATPases are dynamic hexameric assemblies: new insights into bacterial type IV secretion , 2003, The EMBO journal.

[193]  R. Heinzen,et al.  Dot/Icm Type IVB Secretion System Requirements for Coxiella burnetii Growth in Human Macrophages , 2011, mBio.

[194]  Leandro R. S. Barbosa,et al.  Bacterial killing via a type IV secretion system , 2015, Nature Communications.

[195]  R. Haas,et al.  Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin‐8 , 2003, Molecular microbiology.

[196]  P. Myler,et al.  The Rickettsia type IV secretion system: unrealized complexity mired by gene family expansion. , 2016, Pathogens and disease.

[197]  C. van der Does,et al.  Functional Analysis of the Gonococcal Genetic Island of Neisseria gonorrhoeae , 2014, PloS one.

[198]  K. Zangger,et al.  VirB8-like protein TraH is crucial for DNA transfer in Enterococcus faecalis , 2016, Scientific Reports.

[199]  Thomas F Meyer,et al.  Type IV secretion systems and their effectors in bacterial pathogenesis. , 2006, Current opinion in microbiology.

[200]  G. Jensen,et al.  In situ structure of the Legionella Dot/Icm type IV secretion system by electron cryotomography , 2017, EMBO reports.

[201]  D. Zamboni,et al.  Coxiella burnetii express type IV secretion system proteins that function similarly to components of the Legionella pneumophila Dot/Icm system , 2003, Molecular microbiology.

[202]  W. L. Teng,et al.  Two Novel Membrane Proteins, TcpD and TcpE, Are Essential for Conjugative Transfer of pCW3 in Clostridium perfringens , 2014, Journal of bacteriology.

[203]  F. Inagaki,et al.  Tertiary structure-function analysis reveals the pathogenic signaling potentiation mechanism of Helicobacter pylori oncogenic effector CagA. , 2012, Cell host & microbe.

[204]  A. Peña,et al.  Towards an integrated model of bacterial conjugation. , 2014, FEMS microbiology reviews.

[205]  R. Haas,et al.  Natural competence for DNA transformation in Helicobacter pylori : identification and genetic characterization of the comB locus , 1998, Molecular microbiology.

[206]  L. Frost,et al.  F conjugation: back to the beginning. , 2013, Plasmid.

[207]  J. Davies,et al.  Conjugative Junctions in RP4-Mediated Mating ofEscherichia coli , 2000, Journal of bacteriology.

[208]  S. Backert,et al.  Composition, structure and function of the Helicobacter pylori cag pathogenicity island encoded type IV secretion system. , 2015, Future microbiology.

[209]  H. Newton,et al.  The Effector Cig57 Hijacks FCHO-Mediated Vesicular Trafficking to Facilitate Intracellular Replication of Coxiella burnetii , 2016, PLoS pathogens.

[210]  P. Christie,et al.  The Agrobacterium tumefaciens virB4 gene product is an essential virulence protein requiring an intact nucleoside triphosphate-binding domain , 1993, Journal of bacteriology.

[211]  Y. Mao,et al.  Identification and Structural Characterization of a Legionella Phosphoinositide Phosphatase* , 2013, The Journal of Biological Chemistry.

[212]  Christof R Hauck,et al.  Helicobacter pylori adhesin HopQ engages in a virulence-enhancing interaction with human CEACAMs , 2016, Nature Microbiology.

[213]  Melanie B. Berkmen,et al.  Critical Components of the Conjugation Machinery of the Integrative and Conjugative Element ICEBs1 of Bacillus subtilis , 2015, Journal of bacteriology.

[214]  S. Albers,et al.  Mechanisms of gene flow in archaea , 2017, Nature Reviews Microbiology.

[215]  J. Celli,et al.  Brucella Evades Macrophage Killing via VirB-dependent Sustained Interactions with the Endoplasmic Reticulum , 2003, The Journal of experimental medicine.

[216]  E. Orlova,et al.  Structure of a VirD4 coupling protein bound to a VirB type IV secretion machinery , 2017, The EMBO journal.

[217]  Lukas N. Mueller,et al.  Proteome Analysis of Legionella Vacuoles Purified by Magnetic Immunoseparation Reveals Secretory and Endosomal GTPases , 2009, Traffic.

[218]  D. St Johnston,et al.  Supplementary Figure 5 , 2009 .

[219]  H. Hilbi,et al.  The inositol polyphosphate 5‐phosphatase OCRL1 restricts intracellular growth of Legionella, localizes to the replicative vacuole and binds to the bacterial effector LpnE , 2009, Cellular microbiology.