Thiol-end-functionalized Regioregular Poly(3-hexylthiophene) for PbS Quantum Dot Dispersions

[1]  U. Banin,et al.  Coupled Colloidal Quantum Dot Molecules , 2022, Proceedings of the nanoGe Spring Meeting 2022.

[2]  Polymer–quantum dot composite hybrid solar cells with a bi-continuous network morphology using the block copolymer poly(3-hexylthiophene)-b-polystyrene or its blend with poly(3-hexylthiophene) as a donor , 2021 .

[3]  Shujuan Huang,et al.  Enhancing the Efficiency and Stability of PbS Quantum Dot Solar Cells through Engineering Ultra-thin NiO Nanocrystalline Interlayer. , 2020, ACS applied materials & interfaces.

[4]  Shangfeng Yang,et al.  18% Efficiency organic solar cells. , 2020, Science bulletin.

[5]  Yizheng Jin,et al.  Electrochemically-stable ligands bridge the photoluminescence-electroluminescence gap of quantum dots , 2019, Nature Communications.

[6]  P. Qi,et al.  Cost-Effective and Semi-Transparent PbS QDs Solar Cells Using Copper Electrode. , 2019, ACS applied materials & interfaces.

[7]  U. Banin,et al.  Colloidal quantum dot molecules manifesting quantum coupling at room temperature , 2019, Nature Communications.

[8]  Qing Sun,et al.  Efficient and Stable PbS Quantum Dot Solar Cells by Triple-Cation Perovskite Passivation. , 2019, ACS nano.

[9]  M. Loi,et al.  Stable PbS quantum dot ink for efficient solar cells by solution-phase ligand engineering , 2019, Journal of Materials Chemistry A.

[10]  Yongfang Li,et al.  Highly Efficient Fullerene-Free Organic Solar Cells Operate at Near Zero Highest Occupied Molecular Orbital Offsets. , 2019, Journal of the American Chemical Society.

[11]  Ruipeng Li,et al.  High Dielectric Constant Semiconducting Poly(3-alkylthiophene)s from Side Chain Modification with Polar Sulfinyl and Sulfonyl Groups , 2018, Macromolecules.

[12]  J. Hodgkiss,et al.  End-Functionalized Semiconducting Polymers as Reagents in the Synthesis of Hybrid II-VI Nanoparticles. , 2018, Langmuir : the ACS journal of surfaces and colloids.

[13]  Junbiao Peng,et al.  Fully Solution-Processed Tandem White Quantum-Dot Light-Emitting Diode with an External Quantum Efficiency Exceeding 25. , 2018, ACS nano.

[14]  Fan Yang,et al.  High‐Efficiency PbS Quantum‐Dot Solar Cells with Greatly Simplified Fabrication Processing via “Solvent‐Curing” , 2018, Advanced materials.

[15]  Jun Du,et al.  Cosensitized Quantum Dot Solar Cells with Conversion Efficiency over 12% , 2018, Advanced materials.

[16]  A. K. Rath,et al.  The role of surface ligands in determining the electronic properties of quantum dot solids and their impact on photovoltaic figure of merits. , 2018, Nanoscale.

[17]  F. Huang,et al.  A high dielectric constant non-fullerene acceptor for efficient bulk-heterojunction organic solar cells , 2018 .

[18]  Jean Manca,et al.  High dielectric constant conjugated materials for organic photovoltaics , 2017 .

[19]  G. Galli,et al.  Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification , 2017, Nature Communications.

[20]  N. Makarov,et al.  Phase-Transfer Ligand Exchange of Lead Chalcogenide Quantum Dots for Direct Deposition of Thick, Highly Conductive Films. , 2017, Journal of the American Chemical Society.

[21]  S. Jang,et al.  High‐Efficiency Photovoltaic Devices using Trap‐Controlled Quantum‐Dot Ink prepared via Phase‐Transfer Exchange , 2017, Advanced materials.

[22]  N. Spooner,et al.  Versatile PbS Quantum Dot Ligand Exchange Systems in the Presence of Pb-Thiolates. , 2017, Small.

[23]  Tomoya Higashihara,et al.  2,2′-Bis(1,3,4-thiadiazole)-Based π-Conjugated Copolymers for Organic Photovoltaics with Exceeding 8% and Its Molecular Weight Dependence of Device Performance , 2017 .

[24]  Zhanjun Zhang,et al.  A fused-ring based electron acceptor for efficient non-fullerene polymer solar cells with small HOMO offset , 2016 .

[25]  Cherie R. Kagan,et al.  Building devices from colloidal quantum dots , 2016, Science.

[26]  R. Viswanatha,et al.  Understanding the Role of Surface Capping Ligands in Passivating the Quantum Dots Using Copper Dopants as Internal Sensor , 2016 .

[27]  M. Ko,et al.  Controlled synthesis of multi-armed P3HT star polymers with gold nanoparticle core , 2016 .

[28]  H. Assender,et al.  Poly(3-hexylthiophene-2,5-diyl) as a Hole Transport Layer for Colloidal Quantum Dot Solar Cells. , 2016, ACS applied materials & interfaces.

[29]  E. Sargent,et al.  Colloidal quantum dot ligand engineering for high performance solar cells , 2016 .

[30]  Gerasimos Konstantatos,et al.  The role of surface passivation for efficient and photostable PbS quantum dot solar cells , 2016, Nature Energy.

[31]  Edward H. Sargent,et al.  Colloidal quantum dot solids for solution-processed solar cells , 2016, Nature Energy.

[32]  E. Johansson,et al.  Colloidally Prepared 3-Mercaptopropionic Acid Capped Lead Sulfide Quantum Dots , 2015 .

[33]  Aixiang Wang,et al.  Emerging strategies for the synthesis of monodisperse colloidal semiconductor quantum rods , 2015 .

[34]  Ping Liu,et al.  Study on π-π Interaction in H- and J-Aggregates of Poly(3-hexylthiophene) Nanowires by Multiple Techniques. , 2015, The journal of physical chemistry. B.

[35]  Jianbo Gao,et al.  Synthetic Conditions for High-Accuracy Size Control of PbS Quantum Dots. , 2015, The journal of physical chemistry letters.

[36]  E. Lifshitz,et al.  Size control by rate control in colloidal PbSe quantum dot synthesis. , 2015, Nanoscale.

[37]  M. R. Kim,et al.  Quantum-Dot-Based Solar Cells: Recent Advances, Strategies, and Challenges. , 2015, The journal of physical chemistry letters.

[38]  T. Alford,et al.  Improved efficiency of P3HT:PCBM solar cells by incorporation of silver oxide interfacial layer , 2014 .

[39]  A. Jen,et al.  High‐Dielectric Constant Side‐Chain Polymers Show Reduced Non‐Geminate Recombination in Heterojunction Solar Cells , 2014 .

[40]  C. Luscombe,et al.  Simple procedure for mono- and bis-end-functionalization of regioregular poly(3-hexylthiophene)s using chalcogens. , 2014, Chemical communications.

[41]  N. Stingelin,et al.  Light absorption of poly(3-hexylthiophene) single crystals , 2014 .

[42]  M. Bonn,et al.  Tuning electron transfer rates through molecular bridges in quantum dot sensitized oxides. , 2013, Nano letters.

[43]  P. Kamat Quantum Dot Solar Cells. The Next Big Thing in Photovoltaics. , 2013, The journal of physical chemistry letters.

[44]  T. Michinobu,et al.  Synthesis and Postfunctionalization of Rod-Coil Diblock and Coil-Rod-Coil Triblock Copolymers Composed of Poly(3-hexylthiophene) and Poly(4-(4'-N,N-dihexylaminophenylethynyl)styrene) Segments , 2012 .

[45]  Zhiyu Qian,et al.  Forming highly fluorescent near-infrared emitting PbS quantum dots in water using glutathione as surface-modifying molecule. , 2012, Journal of colloid and interface science.

[46]  Harald Ade,et al.  Miscibility, Crystallinity, and Phase Development in P3HT/PCBM Solar Cells: Toward an Enlightened Understanding of Device Morphology and Stability , 2011 .

[47]  S. Fabiano,et al.  Role of photoactive layer morphology in high fill factor all-polymer bulk heterojunction solar cells , 2011 .

[48]  G. Whitesides,et al.  Odd-even effects in charge transport across self-assembled monolayers. , 2011, Journal of the American Chemical Society.

[49]  Byungki Kim,et al.  White‐Light‐Emitting Diodes with Quantum Dot Color Converters for Display Backlights , 2010, Advanced materials.

[50]  V. Bulović,et al.  Colloidal PbS quantum dot solar cells with high fill factor. , 2010, ACS nano.

[51]  Ratan Debnath,et al.  Depleted-heterojunction colloidal quantum dot solar cells. , 2010, ACS nano.

[52]  I. Moreels,et al.  Size-dependent optical properties of colloidal PbS quantum dots. , 2009, ACS nano.

[53]  Prashant V. Kamat,et al.  Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters , 2008 .

[54]  E. Doris,et al.  A versatile strategy for quantum dot ligand exchange. , 2007, Journal of the American Chemical Society.

[55]  Ilan Gur,et al.  Hybrid Organic-Nanocrystal Solar Cells , 2005 .

[56]  Toshitada Yoshihara,et al.  Fast intramolecular charge transfer with a planar rigidized electron donor/acceptor molecule. , 2004, Journal of the American Chemical Society.

[57]  A Paul Alivisatos,et al.  Employing end-functional polythiophene to control the morphology of nanocrystal-polymer composites in hybrid solar cells. , 2004, Journal of the American Chemical Society.

[58]  Tsutomu Yokozawa,et al.  Chain-growth polymerization for poly(3-hexylthiophene) with a defined molecular weight and a low polydispersity , 2004 .

[59]  Gregory D. Scholes,et al.  Colloidal PbS Nanocrystals with Size‐Tunable Near‐Infrared Emission: Observation of Post‐Synthesis Self‐Narrowing of the Particle Size Distribution , 2003 .

[60]  H. Sirringhaus,et al.  High-Resolution Ink-Jet Printing of All-Polymer Transistor Circuits , 2000, Science.

[61]  Uri Banin,et al.  Growth and Properties of Semiconductor Core/Shell Nanocrystals with InAs Cores , 2000 .

[62]  Christopher B. Murray,et al.  Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies , 2000 .

[63]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .