A Labelled Sequent System for Tense Logic Kt

The method of labelled tableaux for proof search in modal logics is extended and modified to give a labelled sequent system for the tense logic K t. Soundness and completeness proofs are sketched, and results of an initial lean Prolog implementation in the programming style of lean T A P are presented. The sequent system is modular in that small modifications capture any combination of the reflexive, transitive, euclidean, symmetric and serial extensions of K t.

[1]  M. Fitting Proof Methods for Modal and Intuitionistic Logics , 1983 .

[2]  Dov M. Gabbay,et al.  Labelled Deductive Systems: Volume 1 , 1996 .

[3]  Alasdair Urquhart,et al.  Temporal Logic , 1971 .

[4]  Max J. Cresswell,et al.  A companion to modal logic , 1984 .

[5]  Peter Øhrstrøm,et al.  Temporal Logic , 1994, Lecture Notes in Computer Science.

[6]  Heinrich Zimmermann,et al.  Efficient Loop-Check for Backward Proof Search in Some Non-classical Propositional Logics , 1996, TABLEAUX.

[7]  Rajeev Goré,et al.  Tableau Methods for Modal and Temporal Logics , 1999 .

[8]  Fabio Massacci,et al.  Strongly Analytic Tableaux for Normal Modal Logics , 1994, CADE.

[9]  Ullrich Hustadt,et al.  Simplification and Backjumping in Modal Tableau , 1998, TABLEAUX.

[10]  Alain Heuerding,et al.  On the Modal Logic K Plus Theories , 1995, CSL.

[11]  Jeremy V. Pitt,et al.  Distributed Modal Theorem Proving with KE , 1996, TABLEAUX.

[12]  Fabio Massacci Simplification: A General Constraint Propagation Technique for Propositional and Modal Tableaux , 1998, TABLEAUX.

[13]  Bernhard Beckert,et al.  Free Variable Tableaux for Propositional Modal Logics , 1997, TABLEAUX.

[14]  Colin Stirling,et al.  Modal and Temporal Logics for Processes , 1996, Banff Higher Order Workshop.

[15]  Miroslaw Truszczynski,et al.  Modal nonmonotonic logics , 1993 .

[16]  Max J. Cresswell,et al.  A New Introduction to Modal Logic , 1998 .

[17]  Guido Governatori Labelled Tableaux for Multi-Modal Logics , 1995, TABLEAUX.

[18]  R. L. Goodstein,et al.  Provability in logic , 1959 .

[19]  Melvin Fitting leanTAP Revisited , 1998, J. Log. Comput..