Automated detection of chorio-scleral interface using polarization-sensitive optical coherence tomography

A polarization sensitive optical coherence tomography based automated algorithm for segmentation of the chorio-scleral interface is presented. The algorithm employs a two-step segmentation approach. At first, local birefringence based segmentation with low precision is performed to roughly distinguish the choroid and sclera. Successively, a depth oriented slope fitting to phase retardation is applied in both the choroid and sclera. The interface is determined as the cross-point of the two phase retardation slope lines. The algorithm shows potential for functional, objective, and volumetric choroid thickness measurement.

[1]  C. Hitzenberger,et al.  High speed spectral domain polarization sensitive optical coherence tomography of the human retina. , 2005, Optics express.

[2]  Lihong V. Wang,et al.  Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography. , 2002, Journal of biomedical optics.

[3]  R. Linsenmeier,et al.  Metabolic dependence of photoreceptors on the choroid in the normal and detached retina. , 2000, Investigative ophthalmology & visual science.

[4]  Shuichi Makita,et al.  Monte-Carlo-based phase retardation estimator for polarization sensitive optical coherence tomography. , 2011, Optics express.

[5]  Shuichi Makita,et al.  Full-range polarization-sensitive swept-source optical coherence tomography by simultaneous transversal and spectral modulation. , 2010, Optics express.

[6]  J. Schuman,et al.  Optical coherence tomography. , 2000, Science.

[7]  J. Fujimoto,et al.  In vivo retinal imaging by optical coherence tomography. , 1993, Optics letters.

[8]  R. Chipman,et al.  Homogeneous and inhomogeneous Jones matrices , 1994 .

[9]  Isabelle Bloch,et al.  Automated segmentation of macular layers in OCT images and quantitative evaluation of performances , 2011, Pattern Recognit..

[10]  J. Frangioni In vivo near-infrared fluorescence imaging. , 2003, Current opinion in chemical biology.

[11]  C. Puliafito,et al.  Indocyanine green videoangiography of choroidal neovascularization. , 1989, Ophthalmology.

[12]  T. Yatagai,et al.  Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method. , 2006, Optics express.

[13]  Alexander Wong,et al.  Intra-retinal layer segmentation in optical coherence tomography images. , 2009, Optics express.

[14]  J. Kiel,et al.  Ocular perfusion pressure and choroidal blood flow in the rabbit. , 1995, Investigative ophthalmology & visual science.

[15]  James G. Fujimoto,et al.  Optical Coherence Tomography of Ocular Diseases , 1995 .

[16]  Shuichi Makita,et al.  Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging. , 2010, Optics express.

[17]  J. Fujimoto,et al.  Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging , 1992 .

[18]  Y. Yasuno,et al.  Visualization of phase retardation of deep posterior eye by polarization-sensitive swept-source optical coherence tomography with 1-microm probe. , 2009, Optics express.

[19]  Ronald H Silverman,et al.  High-resolution ultrasonic imaging of the posterior segment. , 2004, Ophthalmology.

[20]  D. Carpenter,et al.  Choroidal blood flow as a heat dissipating mechanism in the macula. , 1980, American journal of ophthalmology.

[21]  J. Jonas,et al.  Decreased choroidal thickness in eyes with secondary angle closure glaucoma. An aetiological factor for deep retinal changes in glaucoma? , 1993, The British journal of ophthalmology.

[22]  Teresa C. Chen,et al.  Retinal nerve fiber layer thickness map determined from optical coherence tomography images. , 2005, Optics express.

[23]  Hiroshi Ishikawa,et al.  Macular segmentation with optical coherence tomography. , 2005, Investigative ophthalmology & visual science.

[24]  H. Grossniklaus,et al.  Morphometric analysis of the choroid, Bruch's membrane, and retinal pigment epithelium in eyes with age-related macular degeneration. , 1996, Investigative ophthalmology & visual science.

[25]  Dao-Yi Yu,et al.  Oxygen Distribution and Consumption within the Retina in Vascularised and Avascular Retinas and in Animal Models of Retinal Disease , 2001, Progress in Retinal and Eye Research.