Influence of molding conditions and talc content on the properties of polypropylene composites

[1]  J. Saja,et al.  Crystallization behavior of polypropylene filled with surface‐modified talc , 1996 .

[2]  Z. Zhong,et al.  The occurrence of the γ-phase in injection moulded polypropylene in relation to the processing conditions , 1996 .

[3]  M. Gilbert,et al.  Structure and properties of talc-filled polypropylene: Effect of phosphate coating , 1996 .

[4]  J. Eguiazábal,et al.  Effects of reprocessing conditions on the properties of unfilled and talc-filled polypropylene , 1996 .

[5]  A. Hiltner,et al.  Ductility of filled polymers , 1994 .

[6]  F. Maurer,et al.  Micromechanical deformations in particulate filled thermoplastics: volume strain measurements , 1994, Journal of Materials Science.

[7]  C. Plummer,et al.  Processing, morphology and properties of a thermotropic liquid crystalline polymer , 1993 .

[8]  A. Dibenedetto,et al.  The yield strength of particulate reinforced thermoplastic composites , 1992 .

[9]  M. Fujiyama,et al.  Distribution of higher-order structures in injection moldings of particulate-filled polypropylenes , 1991 .

[10]  S. N. Maiti,et al.  Mechanical properties of i-PP/CaCO3 composites , 1991 .

[11]  M. Fujiyama,et al.  Structures and properties of injection moldings of crystallization nucleator‐added polypropylenes. I. Structure–property relationships , 1991 .

[12]  M. Fujiyama,et al.  Crystal orientation in injection molding of talc‐filled polypropylene , 1991 .

[13]  F. Rybnikář Orientational memory in filled isotactic polypropylene , 1991 .

[14]  J. Pauquet,et al.  Degradation of polyolefins during melt processing , 1991 .

[15]  J. Kučera,et al.  Yield behavior of PP/CaC03 and PP/Mg(OH)2 composites. II: Enhanced interfacial adhesion , 1990 .

[16]  E. Fleischmann,et al.  Influence of injection rate and melt temperature on polypropylene during injection moulding without packing , 1990 .

[17]  J. J. Aartsen,et al.  Interfacial debonding in polyamide-6/glass bead composites , 1989 .

[18]  F. Rybnikář Orientation in composite of polypropylene and talc , 1989 .

[19]  Musa R. Kamal,et al.  The effect of processing variables on microstructure of injection molded short fiber reinforced polypropylene composites , 1989 .

[20]  R. Jha,et al.  Effect of titanate coupling agents on mechanical properties of mica‐filled polypropylene , 1989 .

[21]  A. Lazzeri,et al.  Fracture of ultrafine calcium carbonate/polypropylene composites , 1989 .

[22]  Gregory M. Glenn,et al.  Fiber-reinforced composites , 1988 .

[23]  J. Milewski,et al.  Handbook Of Fillers For Plastics , 1987 .

[24]  D. Bigg Mechanical properties of particulate filled polymers , 1987 .

[25]  Witold Brostow,et al.  Failure of Plastics , 1986 .

[26]  K. Mitsuishi,et al.  Mechanical properties of polypropylene filled with calcium carbonate , 1985 .

[27]  T. Vu-khanh,et al.  Fracture of mica-reinforced polypropylene: mica concentration effect , 1985 .

[28]  G. Scott Mechano‐chemical degradation and stabilization of polymers , 1984 .

[29]  T. WoodhamsRaymond,et al.  Factors affecting the mechanical properties of mica‐filled polypropylenes , 1983 .

[30]  I. S. Bhardwaj,et al.  Studies of the effect of titanate coupling agent on the performance of polypropylene–calcium carbonate composite , 1982 .

[31]  T. WoodhamsRaymond,et al.  Mica reinforced polypropylene , 1975 .

[32]  M. Xanthos,et al.  The effect of flake aspect ratio on the flexural properties of mica reinforced plastics , 1973 .

[33]  L. Nielsen Simple theory of stress-strain properties of filled polymers† , 1966 .