Atomic Databases: Four of a Kind

In the context of atomic data computations for astrophysical applications, we review four different types of databases we have implemented for data dissemination: a database for nebular modeling; TIPTOPbase; OPserver; and AtomPy. The database for nebular plasmas is briefly discussed as a study case of a successful project. TOPbase and the OPserver were developed during the Opacity Project, an international consortium concerned with the revision of astrophysical opacities, while TIPbase was part of the Iron Project to calculate radiative transition probabilities and electron impact excitation collision strengths for iron-group ions. AtomPy is a prototype for an open, distributed data-assessment environment to engage both producers and users. We discuss design strategies and implementation issues that may help in the undertaking of present and future scientific database projects.

[1]  H. L. Zhang,et al.  Iron Project: atomic data for IR lines , 2006, Proceedings of the International Astronomical Union.

[2]  Claudio Mendoza,et al.  Computation of Atomic Astrophysical Opacities , 2017, 1704.03528.

[3]  C. Laughlin,et al.  Multiplet Splittings and IS,3p, Intercombination-Line Oscillator Strengths in be i and MG I , 1974 .

[4]  C. J. Zeippen,et al.  OPserver: interactive online computations of opacities and radiative accelerations , 2007, 0704.1583.

[5]  Peter R. Young,et al.  CHIANTI—An Atomic Database for Emission Lines. XV. Version 9, Improvements for the X-Ray Satellite Lines , 2019, The Astrophysical Journal Supplement Series.

[6]  Wolfgang L. Wiese A new reference data table for carbon, nitrogen and oxygen spectra , 1996 .

[7]  W. D. Robb,et al.  Electron scattering by complex atoms , 1971 .

[8]  N. Simon,et al.  A Plea For Reexamining Heavy Element Opacities In Stars , 1982 .

[9]  Wolfgang L. Wiese,et al.  Critically Evaluated Atomic Transition Probabilities for Ba I and Ba II , 2002 .

[10]  Wolfgang L. Wiese,et al.  Atomic transition probabilities for vanadium, chromium, and manganese (a critical data compilation of allowed lines) , 1978 .

[11]  Wolfgang L. Wiese,et al.  Experimental Stark Widths and Shifts for Spectral Lines of Neutral and Ionized Atoms (A Critical Review of Selected Data for the Period 1989 Through 2000) , 2002 .

[12]  Wolfgang L. Wiese,et al.  Progress and challenges in the determination of atomic transition probabilities , 1987 .

[13]  Wolfgang L. Wiese,et al.  The critical assessment of atomic transition probabilities , 2008 .

[14]  Claudio Mendoza,et al.  AtomPy: An Open Atomic Data Curation Environment for Astrophysical Applications , 2014 .

[15]  Wolfgang L. Wiese,et al.  A New Critical Review of Experimental Stark Widths and Shifts, ed. by J. Seidel , 2001 .

[16]  Wolfgang L. Wiese,et al.  Atomic spectral tables for the chandra X-ray observatory. Part II. Si VI-Si XII , 2004 .

[17]  Wolfgang L. Wiese,et al.  The critical assessment of atomic oscillator strengths , 1996 .

[18]  F. P. Keenan,et al.  The 2017 release of CLOUDY , 2017, 1705.10877.

[19]  Wolfgang L. Wiese,et al.  Tables of critically evaluated oscillator strengths for the lithium isoelectronic sequence , 1976 .

[20]  Jonathan Tennyson,et al.  Virtual Atomic and Molecular Data Centre , 2010 .

[21]  Jonathan Tennyson,et al.  The virtual atomic and molecular data centre (VAMDC) consortium , 2016 .

[22]  M. Seaton,et al.  Computer programs for the calculation of electron-atom collision cross sections. II. A numerical method for solving the coupled integro-differential equations , 1974 .

[23]  M. Dimitrijević,et al.  Experimental Stark Widths and Shifts for Spectral Lines of Neutral Atoms (A Critical Review of Selected Data for the Period 1976 to 1982) , 1984 .

[24]  Wolfgang L. Wiese,et al.  Atomic Spectral Tables for the Chandra X-ray Observatory. Part IV. Ne v-Ne VIII , 2004 .

[25]  R. A. Phaneuf,et al.  Review of Spectroscopic and Electron-Impact Collision Data Base for Cq+ and Oq+ Ions , 1989 .

[26]  Wolfgang L. Wiese,et al.  The Spectroscopic Data Base for Carbon and Oxygen , 1989 .

[27]  Claudio Mendoza,et al.  The Opacity Project―the TOPBASE atomic database , 1992 .

[28]  W. Eissner,et al.  Techniques for the calculation of atomic structures and radiative data including relativistic corrections , 1974 .

[29]  Ronald J. W. Henry,et al.  Noniterative Integral-Equation Approach to Scattering Problems. , 1973 .

[30]  Wolfgang L. Wiese,et al.  Atomic transition probabilities for scandium and titanium (A critical data compilation of allowed lines) , 1975 .

[31]  H. Mason,et al.  CHIANTI - an atomic database for emission lines - I. Wavelengths greater than 50 Å , 1997 .

[32]  Wolfgang L. Wiese,et al.  On the accuracy of atomic transition probabilities , 1990 .

[33]  J. Malville,et al.  TRANSITION PROBABILITIES IN HIGHLY IONIZED pa AND p* CONFIGURATIONS , 1965 .

[34]  Wolfgang L. Wiese,et al.  Atomic Spectral Tables for the Chandra X-Ray Observatory. Part I S VIII–S XIV , 2003 .

[35]  Wolfgang L. Wiese,et al.  Critically Evaluated Atomic Transition Probabilities for Sulfur S I – S XV , 2009 .

[36]  Wolfgang L. Wiese,et al.  Accurate Atomic Transition Probabilities for Hydrogen, Helium, and Lithium , 2009 .

[37]  Wolfgang L. Wiese,et al.  A Critical Compilation of Atomic Transition Probabilities for Neutral and Singly Ionized Iron , 2006 .

[38]  S. J. Czyzak,et al.  Forbidden Transition Probabilities for Some P, S, Cl and A Ions , 1963 .

[39]  Claudio Mendoza,et al.  The Opacity Project - Computation of Atomic Data , 1992 .

[40]  M J Seaton,et al.  Atomic data for opacity calculations: XXII. Computations for 2472790 multiplet gf-values in Fe VIII to Fe XIII , 1995 .

[41]  Wolfgang L. Wiese,et al.  Atomic Transition Probabilities for Forbidden Lines of the Iron Group Elements: (A Critical Data Compilation for Selected Lines) , 1973 .

[42]  Lawrence H. Aller,et al.  Physics of thermal gaseous nebulae , 1984 .

[43]  Wolfgang L. Wiese,et al.  Atomic Spectral Tables for the Chandra X-Ray Observatory. Part III. Mg V–Mg X , 2004 .

[44]  Gordon Bell,et al.  Beyond the Data Deluge , 2009, Science.

[45]  K A Berrington,et al.  Atomic data from the IRON Project. 1: Goals and methods , 1993 .

[46]  Robert N. Goldberg,et al.  Improved Critical Compilations of Selected Atomic Transition Probabilities for Neutral and Singly , 2007 .