Atomic Databases: Four of a Kind
暂无分享,去创建一个
[1] H. L. Zhang,et al. Iron Project: atomic data for IR lines , 2006, Proceedings of the International Astronomical Union.
[2] Claudio Mendoza,et al. Computation of Atomic Astrophysical Opacities , 2017, 1704.03528.
[3] C. Laughlin,et al. Multiplet Splittings and IS,3p, Intercombination-Line Oscillator Strengths in be i and MG I , 1974 .
[4] C. J. Zeippen,et al. OPserver: interactive online computations of opacities and radiative accelerations , 2007, 0704.1583.
[5] Peter R. Young,et al. CHIANTI—An Atomic Database for Emission Lines. XV. Version 9, Improvements for the X-Ray Satellite Lines , 2019, The Astrophysical Journal Supplement Series.
[6] Wolfgang L. Wiese. A new reference data table for carbon, nitrogen and oxygen spectra , 1996 .
[7] W. D. Robb,et al. Electron scattering by complex atoms , 1971 .
[8] N. Simon,et al. A Plea For Reexamining Heavy Element Opacities In Stars , 1982 .
[9] Wolfgang L. Wiese,et al. Critically Evaluated Atomic Transition Probabilities for Ba I and Ba II , 2002 .
[10] Wolfgang L. Wiese,et al. Atomic transition probabilities for vanadium, chromium, and manganese (a critical data compilation of allowed lines) , 1978 .
[11] Wolfgang L. Wiese,et al. Experimental Stark Widths and Shifts for Spectral Lines of Neutral and Ionized Atoms (A Critical Review of Selected Data for the Period 1989 Through 2000) , 2002 .
[12] Wolfgang L. Wiese,et al. Progress and challenges in the determination of atomic transition probabilities , 1987 .
[13] Wolfgang L. Wiese,et al. The critical assessment of atomic transition probabilities , 2008 .
[14] Claudio Mendoza,et al. AtomPy: An Open Atomic Data Curation Environment for Astrophysical Applications , 2014 .
[15] Wolfgang L. Wiese,et al. A New Critical Review of Experimental Stark Widths and Shifts, ed. by J. Seidel , 2001 .
[16] Wolfgang L. Wiese,et al. Atomic spectral tables for the chandra X-ray observatory. Part II. Si VI-Si XII , 2004 .
[17] Wolfgang L. Wiese,et al. The critical assessment of atomic oscillator strengths , 1996 .
[18] F. P. Keenan,et al. The 2017 release of CLOUDY , 2017, 1705.10877.
[19] Wolfgang L. Wiese,et al. Tables of critically evaluated oscillator strengths for the lithium isoelectronic sequence , 1976 .
[20] Jonathan Tennyson,et al. Virtual Atomic and Molecular Data Centre , 2010 .
[21] Jonathan Tennyson,et al. The virtual atomic and molecular data centre (VAMDC) consortium , 2016 .
[22] M. Seaton,et al. Computer programs for the calculation of electron-atom collision cross sections. II. A numerical method for solving the coupled integro-differential equations , 1974 .
[23] M. Dimitrijević,et al. Experimental Stark Widths and Shifts for Spectral Lines of Neutral Atoms (A Critical Review of Selected Data for the Period 1976 to 1982) , 1984 .
[24] Wolfgang L. Wiese,et al. Atomic Spectral Tables for the Chandra X-ray Observatory. Part IV. Ne v-Ne VIII , 2004 .
[25] R. A. Phaneuf,et al. Review of Spectroscopic and Electron-Impact Collision Data Base for Cq+ and Oq+ Ions , 1989 .
[26] Wolfgang L. Wiese,et al. The Spectroscopic Data Base for Carbon and Oxygen , 1989 .
[27] Claudio Mendoza,et al. The Opacity Project―the TOPBASE atomic database , 1992 .
[28] W. Eissner,et al. Techniques for the calculation of atomic structures and radiative data including relativistic corrections , 1974 .
[29] Ronald J. W. Henry,et al. Noniterative Integral-Equation Approach to Scattering Problems. , 1973 .
[30] Wolfgang L. Wiese,et al. Atomic transition probabilities for scandium and titanium (A critical data compilation of allowed lines) , 1975 .
[31] H. Mason,et al. CHIANTI - an atomic database for emission lines - I. Wavelengths greater than 50 Å , 1997 .
[32] Wolfgang L. Wiese,et al. On the accuracy of atomic transition probabilities , 1990 .
[33] J. Malville,et al. TRANSITION PROBABILITIES IN HIGHLY IONIZED pa AND p* CONFIGURATIONS , 1965 .
[34] Wolfgang L. Wiese,et al. Atomic Spectral Tables for the Chandra X-Ray Observatory. Part I S VIII–S XIV , 2003 .
[35] Wolfgang L. Wiese,et al. Critically Evaluated Atomic Transition Probabilities for Sulfur S I – S XV , 2009 .
[36] Wolfgang L. Wiese,et al. Accurate Atomic Transition Probabilities for Hydrogen, Helium, and Lithium , 2009 .
[37] Wolfgang L. Wiese,et al. A Critical Compilation of Atomic Transition Probabilities for Neutral and Singly Ionized Iron , 2006 .
[38] S. J. Czyzak,et al. Forbidden Transition Probabilities for Some P, S, Cl and A Ions , 1963 .
[39] Claudio Mendoza,et al. The Opacity Project - Computation of Atomic Data , 1992 .
[40] M J Seaton,et al. Atomic data for opacity calculations: XXII. Computations for 2472790 multiplet gf-values in Fe VIII to Fe XIII , 1995 .
[41] Wolfgang L. Wiese,et al. Atomic Transition Probabilities for Forbidden Lines of the Iron Group Elements: (A Critical Data Compilation for Selected Lines) , 1973 .
[42] Lawrence H. Aller,et al. Physics of thermal gaseous nebulae , 1984 .
[43] Wolfgang L. Wiese,et al. Atomic Spectral Tables for the Chandra X-Ray Observatory. Part III. Mg V–Mg X , 2004 .
[44] Gordon Bell,et al. Beyond the Data Deluge , 2009, Science.
[45] K A Berrington,et al. Atomic data from the IRON Project. 1: Goals and methods , 1993 .
[46] Robert N. Goldberg,et al. Improved Critical Compilations of Selected Atomic Transition Probabilities for Neutral and Singly , 2007 .