Optical Vortex Trapping and the Dynamics of Particle Rotation

New possibilities have recently emerged for producing optical beams with complex and intricate structures, and for the non-contact optical manipulation of matter. This book fully describes the electromagnetic theory, optical properties, methods and applications associated with this new technology. Detailed discussions are given of unique beam characteristics, such as optical vortices and other wavefront structures, the associated phase properties and photonic aspects, along with applications ranging from cold atom manipulation to optically driven micromachines. Features include: * Comprehensive and authoritative treatments of the latest research in this area of nanophotonics, written by the leading researchers * Accounts of numerous microfluidics, nanofabrication, quantum informatics and optical manipulation applications * Coverage that fully spans the subject area, from fundamental theory and simulations to experimental methods and results Graduate students and established researchers in academia, national laboratories and industry will find this book an invaluable guide to the latest technologies in this rapidly developing field.

[1]  Gregor Knöner,et al.  Toolbox for Calculation of Optical Forces and Torques , 2007 .

[2]  S. Barnett,et al.  Local transfer of optical angular momentum to matter , 2005 .

[3]  A. Vaziri,et al.  Entanglement of the orbital angular momentum states of photons , 2001, Nature.

[4]  R. A. Beth Mechanical Detection and Measurement of the Angular Momentum of Light , 1936 .

[5]  Measurement of the total optical angular momentum transfer in optical tweezers. , 2006, Optics express.

[6]  K. Volke-Sepúlveda,et al.  General construction and connections of vector propagation invariant optical fields: TE and TM modes and polarization states , 2006 .

[7]  Toshimitsu Asakura,et al.  Radiation forces on a dielectric sphere in the Rayleigh scattering regime , 1996 .

[8]  Mark S. Gordon,et al.  Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion , 1999 .

[9]  Optical measurement of torque exerted on an elongated object by a noncircular laser beam , 2004, physics/0403008.

[10]  Halina Rubinsztein-Dunlop,et al.  Physics of optical tweezers. , 2007, Methods in cell biology.

[11]  H. Rubinsztein-Dunlop,et al.  Measurement of the index of refraction of single microparticles. , 2006, Physical review letters.

[12]  Zhanghua Wu,et al.  Scattering of a spheroidal particle illuminated by a gaussian beam. , 2001, Applied optics.

[13]  Norman R. Heckenberg,et al.  Optical tweezers computational toolbox , 2007 .

[14]  P. Ormos,et al.  Integrated optical motor. , 2006, Applied optics.

[15]  H. Rubinsztein-Dunlop,et al.  Numerical modelling of optical trapping , 2001 .

[16]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[17]  H. Rubinsztein-Dunlop,et al.  Calculation of the T-matrix: general considerations and application of the point-matching method , 2003 .

[18]  Norman R. Heckenberg,et al.  Optically driven micromachines: progress and prospects , 2005, SPIE Micro + Nano Materials, Devices, and Applications.

[19]  H. Rubinsztein-Dunlop,et al.  Calculation and optical measurement of laser trapping forces on non-spherical particles , 2001 .

[20]  Towards efficient modelling of optical micromanipulation of complex structures , 2006, physics/0607231.

[21]  R. Atkinson Energy and Angular Momentum in Certain Optical Problems , 1935 .

[22]  Pal Ormos,et al.  Orientation of flat particles in optical tweezers by linearly polarized light. , 2003, Optics express.

[23]  Norman R. Heckenberg,et al.  Optically driven micromachines: design and fabrication , 2007 .

[24]  Koji Ikuta,et al.  Force-controllable, optically driven micromachines fabricated by single-step two-photon microstereolithography , 2003 .

[25]  J. Humblet,et al.  Sur le moment d'impulsion d'une onde électromagnétique , 1943 .

[26]  James H. Crichton,et al.  THE MEASURABLE DISTINCTION BETWEEN THE SPIN AND ORBITAL ANGULAR MOMENTA OF ELECTROMAGNETIC RADIATION , 2000 .

[27]  K. T. Gahagan,et al.  Optical vortex trapping of particles , 1996, Summaries of papers presented at the Conference on Lasers and Electro-Optics.

[28]  Gérard Gouesbet,et al.  Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. I. On-axis beams , 1994 .

[29]  Hiroo Ukita,et al.  A shuttlecock optical rotator-its design, fabrication and evaluation for a microfluidic mixer , 2002 .

[30]  H. Rubinsztein-Dunlop,et al.  Optical application and measurement of torque on microparticles of isotropic nonabsorbing material , 2003, physics/0309122.

[31]  C. Rao,et al.  Nanorotors using asymmetric inorganic nanorods in an optical trap , 2006 .

[32]  G. Videen Light Scattering from a Sphere Near a Plane Interface , 2000 .

[33]  David G Grier,et al.  Structure of optical vortices. , 2003, Physical review letters.

[34]  I. V. Basistiy,et al.  Manifestation of the rotational Doppler effect by use of an off-axis optical vortex beam. , 2003, Optics letters.

[35]  Michelle D. Wang,et al.  Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. , 2004, Physical review letters.

[36]  Shunichi Sato,et al.  Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam. , 2007, Optics letters.

[37]  M. Padgett,et al.  Limit to the orbital angular momentum per unit energy in a light beam that can be focussed onto a small particle , 2000 .

[38]  H. Rubinsztein-Dunlop,et al.  Optical alignment and spinning of laser-trapped microscopic particles , 1998, Nature.

[39]  H. Rubinsztein-Dunlop,et al.  Multipole Expansion of Strongly Focussed Laser Beams , 2003 .

[40]  P. Waterman,et al.  SYMMETRY, UNITARITY, AND GEOMETRY IN ELECTROMAGNETIC SCATTERING. , 1971 .

[41]  A. Ashkin Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. , 1992, Methods in cell biology.

[42]  Norman R. Heckenberg,et al.  Optical Particle Trapping with Higher-order Doughnut Beams Produced Using High Efficiency Computer Generated Holograms , 1995 .

[43]  Pál Ormos,et al.  Complex micromachines produced and driven by light , 2001, CLEO 2002.

[44]  Halina Rubinsztein-Dunlop,et al.  Integrated optomechanical microelements. , 2007, Optics express.

[45]  Antonio Alvaro Ranha Neves,et al.  Exact partial wave expansion of optical beams with respect to an arbitrary origin. , 2006, Optics letters.

[46]  D. White Vector finite element modeling of optical tweezers , 2000 .

[47]  G Leuchs,et al.  Sharper focus for a radially polarized light beam. , 2003, Physical review letters.

[48]  H. Rubinsztein-Dunlop,et al.  Orientation of biological cells using plane-polarized Gaussian beam optical tweezers , 2003, physics/0308105.

[49]  H. Rubinsztein-Dunlop,et al.  Mechanical Effects of Optical Vortices , 1999 .

[50]  P. Chaikin,et al.  Light streak tracking of optically trapped thin microdisks. , 2002, Physical review letters.

[51]  G. Gouesbet,et al.  On the scattering of light by a Mie scatter center located on the axis of an axisymmetric light profile , 1982 .

[52]  H. Ukita,et al.  Theoretical Demonstration of a Newly Designed Micro-Rotator Driven by Optical Pressure on a Light Incident Surface , 1997 .

[53]  Miles J. Padgett,et al.  Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner , 2000 .

[54]  S. Barnett,et al.  Measuring the orbital angular momentum of a single photon. , 2002, Physical review letters.

[55]  R. Gauthier,et al.  Computation of the optical trapping force using an FDTD based technique. , 2005, Optics express.

[56]  Norman R. Heckenberg,et al.  Optical measurement of microscopic torques , 2001 .

[57]  M J Padgett,et al.  Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. , 2002, Physical review letters.

[58]  Timo A. Nieminen Comment on "Geometric absorption of electromagnetic angular momentum", C. Konz, G. Benford , 2004 .

[59]  A. Doicu,et al.  Computation of the beam-shape coefficients in the generalized Lorenz-Mie theory by using the translational addition theorem for spherical vector wave functions. , 1997, Applied optics.

[60]  He,et al.  Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. , 1995, Physical review letters.

[61]  M J Padgett,et al.  Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. , 1997, Optics letters.

[62]  Norman R. Heckenberg,et al.  Optical torque and symmetry , 2004, SPIE Optics + Photonics.

[63]  Pál Ormos,et al.  Rotors produced and driven in laser tweezers with reversed direction of rotation , 2002 .

[64]  Performance of a rotating aperture for spinning and orienting objects in optical tweezers , 2003 .

[65]  Miles J Padgett,et al.  Rotational control within optical tweezers by use of a rotating aperture. , 2002, Optics letters.

[66]  M J Padgett,et al.  Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle. , 2003, Physical review letters.

[67]  Otto Algebraic structure of embedded Abelian chiral gauge theories. , 1993, Physical review. D, Particles and fields.

[68]  G. Gouesbet,et al.  Generalized Lorenz-Mie theory for a spheroidal particle with off-axis Gaussian-beam illumination. , 2003, Applied optics.

[69]  Satish M. Mahajan,et al.  Electromagnetic wave technique to determine radiation torque on micromachines driven by light , 2003 .

[70]  Halina Rubinsztein-Dunlop,et al.  Optical microrheology using rotating laser-trapped particles. , 2004, Physical review letters.

[71]  Norman R. Heckenberg,et al.  FDFD/T-matrix hybrid method , 2007 .

[72]  Norman R. Heckenberg,et al.  Torque transfer in optical tweezers due to orbital angular momentum , 2006, SPIE Optics + Photonics.

[73]  Stephen M. Barnett,et al.  Optical angular-momentum flux* , 2002 .

[74]  Michael I. Mishchenko,et al.  Light scattering by randomly oriented axially symmetric particles , 1991 .

[75]  Ramani Duraiswami,et al.  Recursions for the Computation of Multipole Translation and Rotation Coefficients for the 3-D Helmholtz Equation , 2003, SIAM J. Sci. Comput..

[76]  Gerd Leuchs,et al.  Focusing light to a tighter spot , 2000 .