A Viewpoint on Heterogeneous Electrocatalysis and Redox Mediation in Nonaqueous Li-O2 Batteries

[1]  Linda F. Nazar,et al.  Current density dependence of peroxide formation in the Li–O2 battery and its effect on charge , 2013 .

[2]  Dong Jin Lee,et al.  Directly grown Co3O4 nanowire arrays on Ni-foam: structural effects of carbon-free and binder-free cathodes for lithium-oxygen batteries , 2014 .

[3]  B. McCloskey,et al.  Nonaqueous Li-air batteries: a status report. , 2014, Chemical reviews.

[4]  D. Bethune,et al.  On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries. , 2011, Journal of the American Chemical Society.

[5]  H. Hansen,et al.  Universality in Nonaqueous Alkali Oxygen Reduction on Metal Surfaces: Implications for Li–O2 and Na–O2 Batteries , 2016 .

[6]  Hubert A. Gasteiger,et al.  Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries. , 2011, Journal of the American Chemical Society.

[7]  Boris Kozinsky,et al.  Identifying Capacity Limitations in the Li/Oxygen Battery Using Experiments and Modeling , 2011 .

[8]  Sanjeev Mukerjee,et al.  A Study of the Influence of Lithium Salt Anions on Oxygen Reduction Reactions in Li-Air Batteries , 2015 .

[9]  J. Nørskov,et al.  Theoretical evidence for low kinetic overpotentials in Li-O2 electrochemistry. , 2013, The Journal of chemical physics.

[10]  Yang Shao-Horn,et al.  Chemical and Morphological Changes of Li–O2 Battery Electrodes upon Cycling , 2012 .

[11]  R M Shelby,et al.  Solvents' Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry. , 2011, The journal of physical chemistry letters.

[12]  Bryan D. McCloskey,et al.  On the Mechanism of Nonaqueous Li–O2 Electrochemistry on C and Its Kinetic Overpotentials: Some Implications for Li–Air Batteries , 2012 .

[13]  Linda F Nazar,et al.  The role of catalysts and peroxide oxidation in lithium-oxygen batteries. , 2013, Angewandte Chemie.

[14]  Sanjeev Mukerjee,et al.  Elucidating the Mechanism of Oxygen Reduction for Lithium-Air Battery Applications , 2009 .

[15]  Stefan A Freunberger,et al.  The carbon electrode in nonaqueous Li-O2 cells. , 2013, Journal of the American Chemical Society.

[16]  H. Gasteiger,et al.  Electrocatalytic Activity Studies of Select Metal Surfaces and Implications in Li-Air Batteries , 2010 .

[17]  L. Nazar,et al.  Oxygen Reduction Reaction Using MnO2 Nanotubes/Nitrogen-Doped Exfoliated Graphene Hybrid Catalyst for Li-O2 Battery Applications , 2013 .

[18]  Jürgen Janek,et al.  TEMPO: a mobile catalyst for rechargeable Li-O₂ batteries. , 2014, Journal of the American Chemical Society.

[19]  Lee Johnson,et al.  Promoting solution phase discharge in Li-O2 batteries containing weakly solvating electrolyte solutions. , 2016, Nature materials.

[20]  P. Bruce,et al.  An O2 cathode for rechargeable lithium batteries: The effect of a catalyst , 2007 .

[21]  Venkatasubramanian Viswanathan,et al.  Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li–O2 battery capacity , 2015, Proceedings of the National Academy of Sciences.

[22]  Yuyan Shao,et al.  Making Li‐Air Batteries Rechargeable: Material Challenges , 2013 .

[23]  H. Pitsch,et al.  Identifying Descriptors for Solvent Stability in Nonaqueous Li-O2 Batteries. , 2014, The journal of physical chemistry letters.

[24]  J. Nørskov,et al.  Li-O2 Kinetic Overpotentials: Tafel Plots from Experiment and First-Principles Theory. , 2013, The journal of physical chemistry letters.

[25]  Donald J. Siegel,et al.  Lithium peroxide surfaces are metallic, while lithium oxide surfaces are not. , 2012, Journal of the American Chemical Society.

[26]  Donald J. Siegel,et al.  Charge transport in lithium peroxide: relevance for rechargeable metal–air batteries , 2013 .

[27]  Linda F. Nazar,et al.  A Highly Active Low Voltage Redox Mediator for Enhanced Rechargeability of Lithium–Oxygen Batteries , 2015, ACS central science.

[28]  Daniel Sharon,et al.  LithiumOxygen Electrochemistry in Non‐Aqueous Solutions , 2015 .

[29]  Jun Lu,et al.  A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries , 2013, Nature Communications.

[30]  Shuo Chen,et al.  Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. , 2010, Journal of the American Chemical Society.

[31]  Donald J. Siegel,et al.  Enhanced Charge Transport in Amorphous Li2O2 , 2014 .

[32]  Yang-Kook Sun,et al.  Understanding the behavior of Li–oxygen cells containing LiI , 2015 .

[33]  J. Nørskov,et al.  Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li-O2 Batteries. , 2012, The journal of physical chemistry letters.

[34]  Sanjeev Mukerjee,et al.  Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium−Air Battery , 2010 .

[35]  Yuyan Shao,et al.  Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges, and Perspective , 2012 .

[36]  Yuhui Chen,et al.  Charging a Li-O₂ battery using a redox mediator. , 2013, Nature chemistry.

[37]  Linda F. Nazar,et al.  Advances in understanding mechanisms underpinning lithium–air batteries , 2016, Nature Energy.

[38]  Yang Shao-Horn,et al.  Evidence of catalyzed oxidation of Li2O2 for rechargeable Li-air battery applications. , 2012, Physical chemistry chemical physics : PCCP.

[39]  D. Bethune,et al.  Limitations in Rechargeability of Li-O2 Batteries and Possible Origins. , 2012, The journal of physical chemistry letters.

[40]  Dan Sun,et al.  A solution-phase bifunctional catalyst for lithium-oxygen batteries. , 2014, Journal of the American Chemical Society.

[41]  J. Nørskov,et al.  Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery. , 2010, The Journal of chemical physics.

[42]  Venkatasubramanian Viswanathan,et al.  Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li-O₂ batteries. , 2015, Nature chemistry.

[43]  Yang Shao-Horn,et al.  Reactivity of carbon in lithium-oxygen battery positive electrodes. , 2013, Nano letters.

[44]  Jasim Ahmed,et al.  A Critical Review of Li/Air Batteries , 2011 .

[45]  Ye Xu,et al.  Reversibility of Noble Metal-Catalyzed Aprotic Li-O₂ Batteries. , 2015, Nano letters.

[46]  Heinz Pitsch,et al.  Solvent Degradation in Nonaqueous Li-O2 Batteries: Oxidative Stability versus H-Abstraction. , 2014, The journal of physical chemistry letters.

[47]  J. Nørskov,et al.  Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries. , 2011, The Journal of chemical physics.

[48]  Bryan D. McCloskey,et al.  Mechanistic insights for the development of Li-O2 battery materials: addressing Li2O2 conductivity limitations and electrolyte and cathode instabilities. , 2015, Chemical communications.

[49]  Venkatasubramanian Viswanathan,et al.  Tunneling and Polaron Charge Transport through Li2O2 in Li–O2 Batteries , 2013 .

[50]  V. Viswanathan,et al.  Trade-Offs in Capacity and Rechargeability in Nonaqueous Li-O2 Batteries: Solution-Driven Growth versus Nucleophilic Stability. , 2015, The journal of physical chemistry letters.

[51]  J. Dahn,et al.  High-Rate Overcharge Protection of LiFePO4-Based Li-Ion Cells Using the Redox Shuttle Additive 2,5-Ditertbutyl-1,4-dimethoxybenzene , 2005 .

[52]  T. Richardson,et al.  Overcharge Protection for Rechargeable Lithium Polymer Electrolyte Batteries , 1996 .

[53]  Colin M. Burke,et al.  Implications of 4 e– Oxygen Reduction via Iodide Redox Mediation in Li–O2 Batteries , 2016 .

[54]  B. McCloskey,et al.  Lithium−Air Battery: Promise and Challenges , 2010 .

[55]  Peter G. Bruce,et al.  The Lithium Air Battery , 2014 .

[56]  Donald J. Siegel,et al.  How Dopants Can Enhance Charge Transport in Li2O2 , 2015 .

[57]  Zhigang Zak Fang,et al.  A lithium–oxygen battery based on lithium superoxide , 2016, Nature.

[58]  J. Janek,et al.  How To Improve Capacity and Cycling Stability for Next Generation Li-O2 Batteries: Approach with a Solid Electrolyte and Elevated Redox Mediator Concentrations. , 2016, ACS applied materials & interfaces.

[59]  Jean-Marie Tarascon,et al.  H2O2 Decomposition Reaction as Selecting Tool for Catalysts in Li – O2 Cells , 2010 .

[60]  Li Li,et al.  Aprotic and aqueous Li-O₂ batteries. , 2014, Chemical reviews.

[61]  Tao Liu,et al.  Cycling Li-O2 batteries via LiOH formation and decomposition , 2015, Science.

[62]  Yi‐Chun Lu,et al.  Critical Role of Redox Mediator in Suppressing Charging Instabilities of Lithium-Oxygen Batteries. , 2016, Journal of the American Chemical Society.

[63]  Kishan Dholakia,et al.  The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries. , 2014, Nature chemistry.

[64]  L. Nazar,et al.  Oxide Catalysts for Rechargeable High‐Capacity Li–O2 Batteries , 2012 .

[65]  Yang Shao-Horn,et al.  Lithium–oxygen batteries: bridging mechanistic understanding and battery performance , 2013 .

[66]  A. Gewirth,et al.  Investigating the Li-O2 Battery in an Ether-Based Electrolyte Using Differential Electrochemical Mass Spectrometry , 2013 .

[67]  Qingmei Cheng,et al.  Why Do Lithium–Oxygen Batteries Fail: Parasitic Chemical Reactions and Their Synergistic Effect , 2016, Angewandte Chemie.

[68]  Dan Addison,et al.  Comment on “Cycling Li-O2 batteries via LiOH formation and decomposition” , 2016, Science.