Absolutely Unpredictable Chaotic Sequences
暂无分享,去创建一个
Leonardo Trujillo | Miguel Martin-Landrove | Jorge A. Gonzalez | Jorge A. Gonzalez | L. Trujillo | M. Martin-Landrove
[1] F. James. A Review of Pseudorandom Number Generators , 1990 .
[2] J. Doob. Stochastic processes , 1953 .
[3] A. Wolf,et al. Determining Lyapunov exponents from a time series , 1985 .
[4] F. James,et al. Chaos and randomness , 1995 .
[5] S. Kawamoto,et al. Integrable Chaos Maps , 1996 .
[6] J. J. Collins,et al. A random number generator based on the logit transform of the logistic variable , 1992 .
[7] Ken Umeno,et al. METHOD OF CONSTRUCTING EXACTLY SOLVABLE CHAOS , 1996, chao-dyn/9610009.
[8] G. Chaitin. Randomness and Mathematical Proof , 1975 .
[9] Loreto,et al. Concept of complexity in random dynamical systems. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[10] D. Ruelle,et al. Ergodic theory of chaos and strange attractors , 1985 .
[11] Ivan F. Costa,et al. Propagating nature in chaotic systems , 1998 .
[12] S. M. Ulam,et al. On Combination of Stochastic and Deterministic Processes , 1947 .
[13] L. M. Berliner,et al. Statistics, Probability and Chaos , 1992 .
[14] Akhmedov,et al. Quantum theory of strings in an Abelian Higgs model. , 1996, Physical Review D, Particles and fields.
[15] Alan M. Ferrenberg,et al. Monte Carlo simulations: Hidden errors from "good" random number generators. , 1992, Physical review letters.
[16] Jorge A. Gonzalez,et al. Analytical Solutions to Multivalued Maps , 1997 .
[17] González,et al. Interplay between strength of disorder and the measure of chaos in the propagation of carriers. , 1996, Physical review. B, Condensed matter.
[18] P. Stein,et al. NON-LINEAR TRANSFORMATION STUDIES ON ELECTRONIC COMPUTERS , 1964 .
[19] S. Ulam. A collection of mathematical problems , 1960 .
[20] G. Chaitin. Randomness & complexity in pure mathematics , 1994 .
[21] L. Chua,et al. CLARIFYING CHAOS: EXAMPLES AND COUNTEREXAMPLES , 1996 .
[22] Jorge A. Gonzalez,et al. A random number generator based on unpredictable chaotic functions , 1999 .
[23] Phatak,et al. Logistic map: A possible random-number generator. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[24] S. Katsura,et al. Exactly solvable models showing chaotic behavior II , 1985 .
[25] Alstrom,et al. Deterministic diffusion generated by a chaotic map. , 1991, Physical review. A, Atomic, molecular, and optical physics.