Absolutely Unpredictable Chaotic Sequences

We study chaotic functions that are exact solutions to nonlinear maps. A generalization of these functions cannot be expressed as a map of type Xn+1 = g(Xn, Xn-1, …, Xn-r+1). The generalized functions can produce truly random sequences. Even if the initial conditions are known exactly, the next values are in principle unpredictable from the previous values. Although the generating law for these random sequences exists, this law cannot be learned from observations.

[1]  F. James A Review of Pseudorandom Number Generators , 1990 .

[2]  J. Doob Stochastic processes , 1953 .

[3]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[4]  F. James,et al.  Chaos and randomness , 1995 .

[5]  S. Kawamoto,et al.  Integrable Chaos Maps , 1996 .

[6]  J. J. Collins,et al.  A random number generator based on the logit transform of the logistic variable , 1992 .

[7]  Ken Umeno,et al.  METHOD OF CONSTRUCTING EXACTLY SOLVABLE CHAOS , 1996, chao-dyn/9610009.

[8]  G. Chaitin Randomness and Mathematical Proof , 1975 .

[9]  Loreto,et al.  Concept of complexity in random dynamical systems. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[11]  Ivan F. Costa,et al.  Propagating nature in chaotic systems , 1998 .

[12]  S. M. Ulam,et al.  On Combination of Stochastic and Deterministic Processes , 1947 .

[13]  L. M. Berliner,et al.  Statistics, Probability and Chaos , 1992 .

[14]  Akhmedov,et al.  Quantum theory of strings in an Abelian Higgs model. , 1996, Physical Review D, Particles and fields.

[15]  Alan M. Ferrenberg,et al.  Monte Carlo simulations: Hidden errors from "good" random number generators. , 1992, Physical review letters.

[16]  Jorge A. Gonzalez,et al.  Analytical Solutions to Multivalued Maps , 1997 .

[17]  González,et al.  Interplay between strength of disorder and the measure of chaos in the propagation of carriers. , 1996, Physical review. B, Condensed matter.

[18]  P. Stein,et al.  NON-LINEAR TRANSFORMATION STUDIES ON ELECTRONIC COMPUTERS , 1964 .

[19]  S. Ulam A collection of mathematical problems , 1960 .

[20]  G. Chaitin Randomness & complexity in pure mathematics , 1994 .

[21]  L. Chua,et al.  CLARIFYING CHAOS: EXAMPLES AND COUNTEREXAMPLES , 1996 .

[22]  Jorge A. Gonzalez,et al.  A random number generator based on unpredictable chaotic functions , 1999 .

[23]  Phatak,et al.  Logistic map: A possible random-number generator. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[24]  S. Katsura,et al.  Exactly solvable models showing chaotic behavior II , 1985 .

[25]  Alstrom,et al.  Deterministic diffusion generated by a chaotic map. , 1991, Physical review. A, Atomic, molecular, and optical physics.