Global stability of an age-structured virus dynamics model with Beddington-DeAngelis infection function.

In this paper, we study an age-structured virus dynamics model with Beddington-DeAngelis infection function. An explicit formula for the basic reproductive number R0 of the model is obtained. We investigate the global behavior of the model in terms of R0: if R0 ≤ 1, then the infection-free equilibrium is globally asymptotically stable, whereas if R0 > 1, then the infection equilibrium is globally asymptotically stable. Finally, some special cases, which reduce to some known HIV infection models studied by other researchers, are considered.

[1]  Pierre Magal,et al.  Compact attractors for time-periodic age-structured population models. , 2001 .

[2]  S. Ruan,et al.  A delay-differential equation model of HIV infection of CD4(+) T-cells. , 2000, Mathematical biosciences.

[3]  R J D B,et al.  Target Cell Limited and Immune Control Models of HIV Infection : A Comparison , 1998 .

[4]  Gang Huang,et al.  Global analysis for delay virus dynamics model with Beddington-DeAngelis functional response , 2011, Appl. Math. Lett..

[5]  Alan S. Perelson,et al.  Mathematical Analysis of Age-Structured HIV-1 Dynamics with Combination Antiretroviral Therapy , 2007, SIAM J. Appl. Math..

[6]  D. Kirschner,et al.  A model for treatment strategy in the chemotherapy of AIDS. , 1996, Bulletin of mathematical biology.

[7]  Christian L. Althaus,et al.  Dynamics of Immune Escape during HIV/SIV Infection , 2008, PLoS Comput. Biol..

[8]  Fred Brauer,et al.  Dynamics of an age-of-infection cholera model. , 2013, Mathematical biosciences and engineering : MBE.

[9]  Alan S. Perelson,et al.  Mathematical Analysis of HIV-1 Dynamics in Vivo , 1999, SIAM Rev..

[10]  Michael Y. Li,et al.  Impact of Intracellular Delays and Target-Cell Dynamics on In Vivo Viral Infections , 2010, SIAM J. Appl. Math..

[11]  M. Nowak,et al.  Population Dynamics of Immune Responses to Persistent Viruses , 1996, Science.

[12]  Simon Wain-Hobson Virus Dynamics: Mathematical Principles of Immunology and Virology , 2001, Nature Medicine.

[13]  G. Webb,et al.  Lyapunov functional and global asymptotic stability for an infection-age model , 2010 .

[14]  Michael Y. Li,et al.  Global Dynamics of an In-host Viral Model with Intracellular Delay , 2010, Bulletin of mathematical biology.

[15]  Gang Huang,et al.  Global properties for virus dynamics model with Beddington-DeAngelis functional response , 2009, Appl. Math. Lett..

[16]  C. McCluskey,et al.  Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes. , 2012, Mathematical biosciences and engineering : MBE.

[17]  A S Perelson,et al.  Target cell limited and immune control models of HIV infection: a comparison. , 1998, Journal of theoretical biology.

[18]  R. J. de Boer,et al.  A Formal Derivation of the “Beddington” Functional Response , 1997 .

[19]  J. Hale Asymptotic Behavior of Dissipative Systems , 1988 .

[20]  Xianning Liu,et al.  Lyapunov Functions and Global Stability for Age-Structured HIV Infection Model , 2012, SIAM J. Appl. Math..

[21]  Pierre Magal,et al.  Two-Group Infection Age Model Including an Application to Nosocomial Infection , 2013, SIAM J. Appl. Math..

[22]  Jack K. Hale,et al.  Persistence in infinite-dimensional systems , 1989 .

[23]  Daniel Coombs,et al.  An age-structured model of hiv infection that allows for variations in the production rate of viral particles and the death rate of productively infected cells. , 2004, Mathematical biosciences and engineering : MBE.

[24]  D. DeAngelis,et al.  Effects of spatial grouping on the functional response of predators. , 1999, Theoretical population biology.

[25]  Hal L. Smith,et al.  Virus Dynamics: A Global Analysis , 2003, SIAM J. Appl. Math..

[26]  Marco Squassina,et al.  Deformation from symmetry for nonhomogeneous Schrodinger equations of higher order on unbounded domains , 2003 .

[27]  Gang Huang,et al.  Lyapunov Functionals for Delay Differential Equations Model of Viral Infections , 2010, SIAM J. Appl. Math..

[28]  Horst R. Thieme,et al.  EVENTUAL COMPACTNESS FOR SEMIFLOWS GENERATED BY NONLINEAR AGE-STRUCTURED MODELS , 2004 .

[29]  Arnaud Ducrot,et al.  An Age-Structured Within-Host Model for Multistrain Malaria Infections , 2013, SIAM J. Appl. Math..

[30]  Horst R. Thieme,et al.  Semiflows generated by Lipschitz perturbations of non-densely defined operators , 1990, Differential and Integral Equations.

[31]  S. Pilyugin,et al.  GLOBAL ANALYSIS OF AGE-STRUCTURED WITHIN-HOST VIRUS MODEL , 2013 .