Estimating discharge coefficient of semi-elliptical side weir using ANFIS

Summary A labyrinth weir is defined as a weir crest that is not straight in planform. The increased sill length provided by the semi-elliptical labyrinth side weirs effectively reduces upstream head to the particular discharge. They can therefore be used to particular advantage where the width of a channel is restricted and a weir is required to pass a range of discharges with a limited variation in upstream water level. In this study, the discharge capacity of semi-elliptical side weirs is estimated by using Adaptive-Neuro Fuzzy Inference System (ANFIS). 675 Laboratory test results are used for determining discharge coefficient of semi-elliptical labyrinth side weirs. The performance of the ANFIS model is compared Multiple Linear Regression (MLR) and Nonlinear Regression (NLR) models based on performance evaluation parameters. Comparison results indicated that the ANFIS technique could be successfully employed in modeling discharge coefficient.

[1]  U. C. Kothyari,et al.  Modeling of the daily rainfall-runoff relationship with artificial neural network , 2004 .

[2]  Ning Li,et al.  Risk evaluation of heavy snow disasters using BP artificial neural network: the case of Xilingol in Inner Mongolia , 2008 .

[3]  Kittur G. Ranga Raju,et al.  Side Weir in Rectangular Channel , 1979 .

[4]  Özgür Kisi,et al.  Neural networks for estimation of discharge capacity of triangular labyrinth side-weir located on a straight channel , 2011, Expert Syst. Appl..

[5]  Chuntian Cheng,et al.  Combining a fuzzy optimal model with a genetic algorithm to solve multi-objective rainfall–runoff model calibration , 2002 .

[6]  Nachimuthu Karunanithi,et al.  Neural Networks for River Flow Prediction , 1994 .

[7]  H. Nagy,et al.  Prediction of Sediment Load Concentration in Rivers using Artificial Neural Network Model , 2002 .

[8]  Abdüsselam Altunkaynak,et al.  Water Consumption Prediction of Istanbul City by Using Fuzzy Logic Approach , 2005 .

[9]  Ashu Jain,et al.  Hybrid neural network models for hydrologic time series forecasting , 2007, Appl. Soft Comput..

[10]  Mahmud Güngör,et al.  River flow estimation using adaptive neuro fuzzy inference system , 2007, Math. Comput. Simul..

[11]  Fi-John Chang,et al.  Modelling combined open channel flow by artificial neural networks , 2005 .

[12]  Chuntian Cheng,et al.  Using support vector machines for long-term discharge prediction , 2006 .

[13]  Santosh K. Pathak,et al.  TRIANGULAR SIDE WEIRS , 1987 .

[14]  D. Manivannan,et al.  Discharge Coefficient of Rectangular Side Weirs , 1994 .

[15]  Young-Oh Kim,et al.  Rainfall‐runoff models using artificial neural networks for ensemble streamflow prediction , 2005 .

[16]  Özgür Kisi,et al.  Predicting discharge capacity of triangular labyrinth side weir located on a straight channel by using an adaptive neuro-fuzzy technique , 2010, Adv. Eng. Softw..

[17]  Nihat Kaya,et al.  Discharge coefficient of a semi-elliptical side weir in subcritical flow , 2011 .

[18]  Mahmud Güngör,et al.  Hydrological time‐series modelling using an adaptive neuro‐fuzzy inference system , 2008 .

[19]  Hin-Fatt Cheong Discharge Coefficient of Lateral Diversion from Trapezoidal Channel , 1991 .

[20]  Fikret Kocabaş,et al.  Estimation of critical submergence for an intake in a stratified fluid media by neuro-fuzzy approach , 2006 .

[21]  Kanakatti Subramanya,et al.  Spatially Varied Flow over Side-Weirs , 1972 .

[22]  K. Adamowski,et al.  Short‐term municipal water demand forecasting , 2005 .

[23]  Mohammad Mehdi Ebadzadeh,et al.  An expert system for predicting longitudinal dispersion coefficient in natural streams by using ANFIS , 2009, Expert Syst. Appl..

[24]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[25]  K. P. Sudheer,et al.  Rainfall‐runoff modelling using artificial neural networks: comparison of network types , 2005 .

[26]  K. Chau,et al.  Neural network and genetic programming for modelling coastal algal blooms , 2006 .

[27]  Nihat Kaya,et al.  Discharge Capacity of Labyrinth Side Weir Located on a Straight Channel , 2010 .

[28]  Ozgur Kisi,et al.  Modelling daily suspended sediment of rivers in Turkey using several data-driven techniques / Modélisation de la charge journalière en matières en suspension dans des rivières turques à l'aide de plusieurs techniques empiriques , 2008 .

[29]  Ozgur Kisi,et al.  Suspended sediment estimation using neuro-fuzzy and neural network approaches/Estimation des matières en suspension par des approches neurofloues et à base de réseau de neurones , 2005 .

[30]  Chuntian Cheng,et al.  A comparison of performance of several artificial intelligence , 2009 .

[31]  Kwok-wing Chau,et al.  Particle Swarm Optimization Training Algorithm for ANNs in Stage Prediction of Shing Mun River , 2006 .

[32]  K. P. Sudheer,et al.  A neuro-fuzzy computing technique for modeling hydrological time series , 2004 .

[33]  M. A. Yurdusev,et al.  Adaptive neuro fuzzy inference system approach for municipal water consumption modeling: An application to Izmir, Turkey , 2009 .

[34]  Radko Mesiar,et al.  Comparison of forecasting performance of nonlinear models of hydrological time series , 2006 .

[35]  B. S. Thandaveswara,et al.  A non-linear rainfall–runoff model using an artificial neural network , 1999 .

[36]  Surendra Kumar Mishra,et al.  Simulation of Runoff and Sediment Yield using Artificial Neural Networks , 2006 .