Monosaccharide and disaccharide isomerization over Lewis acid sites in hydrophobic and hydrophilic molecular sieves

[1]  Mark E. Davis,et al.  Beyond shape selective catalysis with zeolites: Hydrophobic void spaces in zeolites enable catalysis in liquid water , 2013 .

[2]  M. Deem,et al.  Adsorption of glucose into zeolite beta from aqueous solution , 2013 .

[3]  Mark E. Davis,et al.  Titanium-Beta Zeolites Catalyze the Stereospecific Isomerization of d-Glucose to l-Sorbose via Intramolecular C5–C1 Hydride Shift , 2013 .

[4]  A. Frenkel,et al.  Insights into the interplay of Lewis and Brønsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl)furfural and levulinic acid in aqueous media. , 2013, Journal of the American Chemical Society.

[5]  R. Gorte,et al.  Probing Lewis Acid Sites in Sn-Beta Zeolite , 2013 .

[6]  M. Dusselier,et al.  Mechanistic Insight into the Conversion of Tetrose Sugars to Novel α‐Hydroxy Acid Platform Molecules , 2013 .

[7]  Mark E. Davis,et al.  Framework and Extraframework Tin Sites in Zeolite Beta React Glucose Differently , 2012 .

[8]  D. Vlachos,et al.  Mechanistic Study of Alcohol Dehydration on γ-Al2O3 , 2012 .

[9]  S. Dahl,et al.  Tin-containing silicates: structure–activity relations , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[10]  Cecilia Mondelli,et al.  Biobased Chemicals from Conception toward Industrial Reality: Lessons Learned and To Be Learned , 2012 .

[11]  Rajeev S. Assary,et al.  Metalloenzyme-like catalyzed isomerizations of sugars by Lewis acid zeolites , 2012, Proceedings of the National Academy of Sciences.

[12]  D. Resasco,et al.  Hydrophobic zeolites for biofuel upgrading reactions at the liquid-liquid interface in water/oil emulsions. , 2012, Journal of the American Chemical Society.

[13]  P. Li,et al.  In Situ UV Raman Spectroscopic Study on the Reaction Intermediates for Propylene Epoxidation on TS-1 , 2012 .

[14]  H. Saito,et al.  Lactose as a source for lactulose and other functional lactose derivatives , 2012 .

[15]  D. Vlachos,et al.  Xylose Isomerization to Xylulose and its Dehydration to Furfural in Aqueous Media , 2011 .

[16]  P. Panesar,et al.  Lactulose: production, purification and potential applications. , 2011, Biotechnology advances.

[17]  Mark E. Davis,et al.  Activation of Carbonyl-Containing Molecules with Solid Lewis Acids in Aqueous Media , 2011 .

[18]  Manuel Moliner,et al.  "One-pot" synthesis of 5-(Hydroxymethyl)furfural from carbohydrates using tin-Beta zeolite , 2011 .

[19]  Sean C. Smith,et al.  Titania-water interactions: a review of theoretical studies , 2010 .

[20]  Manuel Moliner,et al.  Mechanism of glucose isomerization using a solid Lewis acid catalyst in water. , 2010, Angewandte Chemie.

[21]  H. L. Carrell,et al.  Metal ion roles and the movement of hydrogen during reaction catalyzed by D-xylose isomerase: a joint x-ray and neutron diffraction study. , 2010, Structure.

[22]  F. Z. Ashtiani,et al.  The isomerization kinetics of lactose to lactulose in the presence of sodium hydroxide at constant and variable pH , 2010 .

[23]  Manuel Moliner,et al.  Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water , 2010, Proceedings of the National Academy of Sciences.

[24]  C. Mota,et al.  Water-tolerant zeolite catalyst for the acetalisation of glycerol , 2009 .

[25]  M. Villamiel,et al.  Isomerization of lactose-derived oligosaccharides: a case study using sodium aluminate. , 2008, Journal of agricultural and food chemistry.

[26]  D. Halleux,et al.  Isomerization of lactose and lactulose production: review , 2007 .

[27]  P. Rossky,et al.  Hydration behavior under confinement by nanoscale surfaces with patterned hydrophobicity and hydrophilicity , 2007 .

[28]  A. Corma,et al.  Mechanism of the Meerwein-Ponndorf-Verley-Oppenauer (MPVO) redox equilibrium on Sn- and Zr-beta zeolite catalysts. , 2006, The journal of physical chemistry. B.

[29]  Pablo G Debenedetti,et al.  Effect of pressure on the phase behavior and structure of water confined between nanoscale hydrophobic and hydrophilic plates. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  A. Corma,et al.  Determination of the catalytically active oxidation Lewis acid sites in Sn-beta zeolites, and their optimisation by the combination of theoretical and experimental studies , 2005 .

[31]  K. Buchholz,et al.  Separation of isomaltose from high sugar concentrated enzyme reaction mixture by dealuminated β-zeolite , 2004 .

[32]  A. Corma,et al.  Water-resistant solid Lewis acid catalysts: Meerwein–Ponndorf–Verley and Oppenauer reactions catalyzed by tin-beta zeolite , 2003 .

[33]  F. J. Moreno,et al.  Effect of high pressure on isomerization and degradation of lactose in alkaline media. , 2003, Journal of agricultural and food chemistry.

[34]  H. Higuchi,et al.  Electrochiroptical response of a hexaarylethane derivative with a helical π-skeleton: drastic UV–Vis and CD spectral changes upon electrolysis of 4′,5′-dibromodispiro[xanthene-9,9′(9′H,10′H)-phenanthrene-10′,9″-xanthene] , 2002 .

[35]  T. Okuhara Water-tolerant solid acid catalysts. , 2002, Chemical reviews.

[36]  Mark E. Davis,et al.  Fundamentals of Chemical Reaction Engineering , 2002 .

[37]  A. Corma,et al.  Al-free Sn-Beta zeolite as a catalyst for the selective reduction of carbonyl compounds (Meerwein-Ponndorf-Verley reaction). , 2002, Journal of the American Chemical Society.

[38]  M. Soleimani,et al.  Isomerization of lactose to lactulose study and comparison of three catalytic systems , 2002 .

[39]  J. Patarin,et al.  Les systèmes hétérogènes « eau-zéolithe hydrophobe »: de nouveaux ressorts moléculaires , 2002 .

[40]  S. Osanai Nickel(II)-Catalyzed Rearrangements of Free Sugars , 2001 .

[41]  M. Villamiel,et al.  Isomerization of lactose catalyzed by alkaline-substituted sepiolites , 1999 .

[42]  A. Corma,et al.  Characterization of nanocrystalline zeolite Beta , 1998 .

[43]  A. Corma,et al.  Direct Synthesis and Characterization of Hydrophobic Aluminum-Free Ti−Beta Zeolite , 1998 .

[44]  A. Corma,et al.  Beta Zeolite as a Catalyst for the Preparation of Alkyl Glucoside Surfactants: The Role of Crystal Size and Hydrophobicity , 1997 .

[45]  A. Corma,et al.  Epoxidation of unsaturated fatty esters over large-poreTi-containing molecular sieves as catalysts: important role of thehydrophobic–hydrophilic properties of the molecular sieve , 1997 .

[46]  K. Buchholz,et al.  Specific adsorption from aqueous phase on apolar zeolites , 1997 .

[47]  M. Gillan,et al.  The adsorption of H2O on TiO2 and SnO2(110) studied by first-principles calculations , 1995, mtrl-th/9508009.

[48]  Z. Liu,et al.  X-ray absorption spectroscopy of Ti-containing molecular sieves ETS-10, aluminum-free Ti-β, and TS-1 , 1995 .

[49]  Mark E. Davis,et al.  Studies on the Catalytic-Oxidation of Alkanes and Alkenes by Titanium Silicates , 1994 .

[50]  Christian Minot,et al.  A theoretical investigation of water adsorption on titanium dioxide surfaces , 1994 .

[51]  M. Kozempel,et al.  The Isomerization Kinetics of Lactose to Lactulose in the Presence of Borate , 1994 .

[52]  Mark E. Davis Reaction chemistry and reaction engineering principles in catalyst design , 1994 .

[53]  D. Blow,et al.  Observations of reaction intermediates and the mechanism of aldose-ketose interconversion by D-xylose isomerase. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[54]  M. Meldal,et al.  Isomerization of D-glucose with glucose-isomerase. A mechanistic study. , 1983, Acta chemica Scandinavica. Series B: Organic chemistry and biochemistry.

[55]  A. Warshel,et al.  Energetics of enzyme catalysis. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[56]  N. Chen Hydrophobic properties of zeolites , 1976 .

[57]  R. Rudham,et al.  Heats of adsorption of water on α- and γ-alumina , 1972 .

[58]  G. J. Young Interaction of water vapor with silica surfaces , 1958 .