Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities

The rise of atmospheric CO2 levels must be slowed, or better reverted, to avoid further undesirable climate change. Electrochemical reduction of CO2 into value-added chemicals using renewable energy is one approach to help address this problem as it will recycle ‘spent’ CO2 (carbon neutral cycle) and it provides a method to store or utilize otherwise wasted excess renewable energy from intermittent sources, both reducing our dependence on fossil fuels. Current electrolysis cells accomplish either high Faradaic efficiency (often >95% selectivity) for a desired product (e.g. CO), or reasonable current density (conversion), whereas both need to be high for a commercial process. This review will discuss current status and opportunities for catalyst design, electrolyte choice, and electrode structure.

[1]  Andrew B. Bocarsly,et al.  Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. , 2008, Journal of the American Chemical Society.

[2]  Klaus S. Lackner,et al.  CARBONATE CHEMISTRY FOR SEQUESTERING FOSSIL CARBON , 2003 .

[3]  Y. Zenitani,et al.  Electrochemical Reduction of Carbon Dioxide Using a Copper Rubeanate Metal Organic Framework , 2012 .

[4]  Yoshio Hori,et al.  Electrochemical Reduction of Carbon Dioxide at a Platinum Electrode in Acetonitrile‐Water Mixtures , 2000 .

[5]  Yihong Chen,et al.  Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. , 2012, Journal of the American Chemical Society.

[6]  Akira Fujishima,et al.  Production of syngas plus oxygen from CO2 in a gas-diffusion electrode-based electrolytic cell , 2002 .

[7]  M. N. Mahmood,et al.  Use of gas-diffusion electrodes for high-rate electrochemical reduction of carbon dioxide. II. Reduction at metal phthalocyanine-impregnated electrodes , 1987 .

[8]  H. Yano,et al.  Efficient electrochemical conversion of CO2 to CO, C2H4 and CH4 at a three-phase interface on a Cu net electrode in acidic solution , 2002 .

[9]  Hui Li,et al.  Electrochemical processing of carbon dioxide. , 2008, ChemSusChem.

[10]  A. N. Frumkin,et al.  Influence of cation adsorption on the kinetics of electrode processes , 1959 .

[11]  Andrew A. Peterson,et al.  How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels , 2010 .

[12]  Devin T. Whipple Microfluidic reactor for the electrochemical reduction of carbon dioxide , 2010 .

[13]  John Newman,et al.  Design of an Electrochemical Cell Making Syngas ( CO + H2 ) from CO2 and H2O Reduction at Room Temperature , 2007 .

[14]  Y. Hori,et al.  Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution , 1990 .

[15]  H. Yano,et al.  Electrochemical reduction of CO2 at three-phase (gas ∣ liquid ∣ solid) and two-phase (liquid ∣ solid) interfaces on Ag electrodes , 2002 .

[16]  Toshio Tsukamoto,et al.  Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media , 1994 .

[17]  D. Dong,et al.  Composite fuel electrode La(0.2)Sr(0.8)TiO(3-δ)-Ce(0.8)Sm(0.2)O(2-δ) for electrolysis of CO2 in an oxygen-ion conducting solid oxide electrolyser. , 2012, Physical chemistry chemical physics : PCCP.

[18]  Sichao Ma,et al.  Nitrogen-based catalysts for the electrochemical reduction of CO2 to CO. , 2012, Journal of the American Chemical Society.

[19]  Eric J. Dufek,et al.  Operation of a Pressurized System for Continuous Reduction of CO2 , 2012 .

[20]  P. Kenis,et al.  Ionic Liquid–Mediated Selective Conversion of CO2 to CO at Low Overpotentials , 2011, Science.

[21]  Gorou Arai,et al.  Selective Electrocatalytic Reduction of Carbon Dioxide to Methanol on Ru-modified Electrode , 1989 .

[22]  Andrew B. Bocarsly,et al.  A new homogeneous electrocatalyst for the reduction of carbon dioxide to methanol at low overpotential , 1994 .

[23]  N. Sonoyama,et al.  Electrochemical reduction of CO2 at metal-porphyrin supported gas diffusion electrodes under high pressure CO2 , 1999 .

[24]  Ronald L. Cook,et al.  High Rate Gas Phase CO 2 Reduction to Ethylene and Methane Using Gas Diffusion Electrodes , 1990 .

[25]  Paul J. A. Kenis,et al.  Effect of Cations on the Electrochemical Conversion of CO2 to CO , 2013 .

[26]  C. Delacourt,et al.  Mathematical Modeling of CO2 Reduction to CO in Aqueous Electrolytes I. Kinetic Study on Planar Silver and Gold Electrodes , 2010 .

[27]  Fatih Köleli,et al.  Electrochemical reduction of CO2 at Pb- and Sn-electrodes in a fixed-bed reactor in aqueous K2CO3 and KHCO3 media , 2003 .

[28]  P. Kenis,et al.  Prospects of CO2 Utilization via Direct Heterogeneous Electrochemical Reduction , 2010 .

[29]  M. Koper,et al.  Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. , 2012, Journal of the American Chemical Society.

[30]  Ned Djilali,et al.  A techno-economic analysis of decentralized electrolytic hydrogen production for fuel cell vehicles , 2005 .

[31]  Eric J. Dufek,et al.  Influence of Electrolytes and Membranes on Cell Operation for Syn-Gas Production , 2012 .

[32]  Yumei Zhai,et al.  The electrochemical reduction of carbon dioxide to formate/formic acid: engineering and economic feasibility. , 2011, ChemSusChem.

[33]  A. Fujishima,et al.  Electrochemical Reduction of CO2 with High Current Density in a CO2-Methanol Medium , 1995 .

[34]  N. Alonso‐Vante,et al.  Ruthenium cluster-like chalcogenide as a methanol tolerant cathode catalyst in air-breathing laminar flow fuel cells , 2009 .

[35]  K. Chandrasekaran,et al.  In-situ spectroscopic investigation of adsorbed intermediate radicals in electrochemical reactions: CO2− on platinum , 1987 .

[36]  Masami Shibata,et al.  High performance RuPd catalysts for CO2 reduction at gas-diffusion electrodes , 1997 .

[37]  John T. S. Irvine,et al.  Electrochemical reduction of CO2 in a proton conducting solid oxide electrolyser , 2011 .

[38]  K. Ohta,et al.  Electrochemical conversion of carbon dioxide to formic acid on Pb in KOH/methanol electrolyte at ambient temperature and pressure , 1998 .

[39]  Matthew W Kanan,et al.  CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. , 2012, Journal of the American Chemical Society.

[40]  Y. Hori,et al.  Product Selectivity Affected by Cationic Species in Electrochemical Reduction of CO2 and CO at a Cu Electrode , 1991 .

[41]  Darren M. Stevenson,et al.  Combining Structural and Electrochemical Analysis of Electrodes Using Micro-Computed Tomography and a Microfluidic Fuel Cell , 2012 .

[42]  Yihong Chen,et al.  Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. , 2012, Journal of the American Chemical Society.

[43]  Anil Verma,et al.  Effect of solid polymer electrolyte on electrochemical reduction of CO2 , 2012 .

[44]  Jingjie Wu,et al.  Effects of the Electrolyte on Electrochemical Reduction of CO2 on Sn Electrode , 2012 .

[45]  Masahiro Hiramoto,et al.  Electrochemical Reduction of Carbon Dioxide on Various Metal Electrodes in Low‐Temperature Aqueous KHCO 3 Media , 1990 .

[46]  D. Liaigre,et al.  Electro-reduction of carbon dioxide to formate on lead electrode in aqueous medium , 2009 .

[47]  Eric J. Dufek,et al.  Influence of S Contamination on CO2 Reduction at Ag Electrodes , 2011 .

[48]  F. Ke,et al.  Electrochemical Reduction of Carbon Dioxide I. Effects of the Electrolyte on the Selectivity and Activity with Sn Electrode , 2012 .

[49]  Y. Hori,et al.  CO2-reduction, catalyzed by metal electrodes , 2010 .

[50]  Bhupendra Kumar,et al.  Photochemical and photoelectrochemical reduction of CO2. , 2012, Annual review of physical chemistry.

[51]  Emily Barton Cole,et al.  Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights. , 2010, Journal of the American Chemical Society.

[52]  William J. Durand,et al.  The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. , 2012, Physical chemistry chemical physics : PCCP.

[53]  Hubert A. Gasteiger,et al.  Handbook of Fuel Cells , 2010 .

[54]  K. W. Frese,et al.  Electrochemical Reduction of Carbon Dioxide to Methane, Methanol, and CO on Ru Electrodes , 1985 .

[55]  Kaname Ito,et al.  Selective Formation of Formic Acid, Oxalic Acid, and Carbon Monoxide by Electrochemical Reduction of Carbon Dioxide , 1987 .

[56]  Aaron J. Sathrum,et al.  Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. , 2009, Chemical Society reviews.

[57]  K. Hara,et al.  Electrocatalytic Formation of CH 4 from CO 2 on a Pt Gas Diffusion Electrode , 1997 .

[58]  S. Koide,et al.  Electroreduction of carbon dioxide by metal phthalocyanines , 1991 .

[59]  Yuh-Shan Ho,et al.  Gas diffusion layer for proton exchange membrane fuel cells—A review , 2009 .

[60]  Katsuhei Kikuchi,et al.  Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution. , 1985 .

[61]  C. Delacourt,et al.  Mathematical Modeling of CO2 Reduction to CO in Aqueous Electrolytes II. Study of an Electrolysis Cell Making Syngas ( C O + H 2 ) from C O 2 and H 2 O Reduction at Room Temperature , 2010 .

[62]  Richard L. Kurtz,et al.  Electrochemical Reduction of CO2 to CH3OH at Copper Oxide Surfaces , 2011 .

[63]  Anne C. Co,et al.  A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper , 2006 .

[64]  P. Kenis,et al.  Nanoparticle Silver Catalysts That Show Enhanced Activity for Carbon Dioxide Electrolysis , 2013 .

[65]  Thomas F. Jaramillo,et al.  New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces , 2012 .

[66]  Frederick W. Williams,et al.  Heterogeneous catalytic CO2 conversion to value-added hydrocarbons , 2010 .

[67]  G. Centi,et al.  Opportunities and prospects in the chemical recycling of carbon dioxide to fuels , 2009 .

[68]  Eric J. Dufek,et al.  Bench-scale electrochemical system for generation of CO and syn-gas , 2011 .

[69]  J. Savéant Molecular catalysis of electrochemical reactions. Mechanistic aspects. , 2008, Chemical reviews.