Analysis of Hot-Carrier Luminescence for Infrared Single-Photon Upconversion and Readout

We propose and analyze a new method for single-photon wavelength up-conversion using optical coupling between a primary infrared (IR) single-photon avalanche diode (SPAD) and a complementary metal oxide semiconductor (CMOS) silicon SPAD, which are fused through a silicon dioxide passivation layer. A primary IR photon induces an avalanche in the IR SPAD. The photons produced by hot-carrier recombination are subsequently sensed by the silicon SPAD, thus, allowing for on-die data processing. Because the devices are fused through their passivation layers, lattice mismatch issues between the semiconductor materials are avoided. We develop a model for calculating the conversion efficiency of the device, and use realistic device parameters to estimate up to 97% upconversion efficiency and 33% system efficiency, limited by the IR detector alone. The new scheme offers a low-cost means to manufacture dense IR-SPAD arrays, while significantly reducing their afterpulsing. We show that this high-speed compact method for upconverting IR photons is feasible and efficient.

[1]  A. Lacaita,et al.  On the bremsstrahlung origin of hot-carrier-induced photons in silicon devices , 1993 .

[2]  Shoji Yamada,et al.  Recombination radiation as possible mechanism of light emission from reverse-biased p-n junctions under breakdown condition , 1993 .

[3]  M. Ghioni,et al.  Avalanche diodes and circuits for infrared photon counting and timing: retrospect and prospect , 2006, 2006 Digest of the LEOS Summer Topical Meetings.

[4]  Franco Zappa,et al.  Evolution and prospects for single-photon avalanche diodes and quenching circuits , 2004 .

[5]  G. Buller,et al.  Design and performance of an InGaAs-InP single-photon avalanche diode detector , 2006, IEEE Journal of Quantum Electronics.

[6]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[7]  D. Klaassen,et al.  A new recombination model for device simulation including tunneling , 1992 .

[8]  R. Newman,et al.  Visible Light from a Silicon p − n Junction , 1955 .

[9]  A. Zhang,et al.  InGaAs/InP MOS Single Photon Detector , 2006, LEOS 2006 - 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society.

[10]  Andrea L. Lacaita,et al.  Observation of avalanche propagation by multiplication assisted diffusion in p‐n junctions , 1990 .

[11]  M. Fejer,et al.  Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides. , 2005, Optics letters.

[12]  S. Cova,et al.  SPADA: single-photon avalanche diode arrays , 2005, IEEE Photonics Technology Letters.

[13]  J. P. Donnelly,et al.  1-μm Geiger-mode detector development , 2005, SPIE Defense + Commercial Sensing.

[14]  A. G. Chynoweth,et al.  Photon Emission from Avalanche Breakdown in Silicon , 1956 .

[15]  B. Nyman,et al.  Afterpulsing in InGaAs/InP single photon avalanche photodetectors , 2006, 2006 Digest of the LEOS Summer Topical Meetings.

[16]  H. Weinfurter,et al.  The breakdown flash of silicon avalanche photodiodes-back door for eavesdropper attacks? , 2001, quant-ph/0104103.

[17]  A. A. Studna,et al.  Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV , 1983 .

[18]  V. Saveliev,et al.  Novel type of avalanche photodetector with Geiger mode operation , 2004 .

[19]  Chia-Yi Huang,et al.  COUNTING EFFICIENCY OF NUCLEAR MULTIPLATE CAMERA , 1963 .

[20]  Dennis G. Manzer,et al.  Timing high-speed microprocessor circuits using picosecond imaging circuit analysis , 2001, IS&T/SPIE Electronic Imaging.

[21]  Loke Chong Lee,et al.  Low temperature glass-to-glass wafer bonding , 2003 .

[22]  R. J. McIntyre,et al.  A new look at impact ionization-Part I: A theory of gain, noise, breakdown probability, and frequency response , 1999 .

[23]  S. Esener,et al.  STI-Bounded Single-Photon Avalanche Diode in a Deep-Submicrometer CMOS Technology , 2006, IEEE Electron Device Letters.

[24]  A. Lacaita,et al.  Avalanche photodiodes and quenching circuits for single-photon detection. , 1996, Applied optics.

[25]  Nicolas Gisin,et al.  Photon counting at telecom wavelengths with commercial InGaAs/InP avalanche photodiodes: Current performance , 2004 .

[26]  Yimin Kang,et al.  InGaAs-on-Si single photon avalanche photodetectors , 2004 .

[27]  A. Walker,et al.  Performance and design of InGaAs /InP photodiodes for single-photon counting at 1.55 microm. , 2000, Applied optics.

[28]  Luigi Frunzio,et al.  Superconducting niobium nanowire single photon detectors , 2006, SPIE Optics East.

[29]  N. Gisin,et al.  Low jitter up-conversion detectors for telecom wavelength GHz QKD , 2006 .

[30]  E. Kuphal,et al.  Optical properties of In1−xGaxP1−yAsy, InP, GaAs, and GaP determined by ellipsometry , 1982 .

[31]  Sae Woo Nam,et al.  Quantum key distribution at telecom wavelengths with noise-free detectors , 2006 .

[32]  Yasunori Saito,et al.  Development of a near-infrared photon-counting system using an InGaAs avalanche photodiode , 2002 .

[33]  Alexis Rochas,et al.  Ultra-compact CMOS single photon detector , 2006, SPIE Optics East.

[34]  David V. Kerns,et al.  Analysis of electroluminescence spectra of silicon and gallium arsenide p–n junctions in avalanche breakdown , 2004 .

[35]  Superconducting Nanowire Photon-Counting Detectors for Optical Communications , 2006 .

[36]  William P. Risk,et al.  A high-performance integrated single-photon detector for telecom wavelengths , 2004 .