Noise in chaotic data: Diagnosis and treatment.

A prominent limiting factor in the analysis of chaotic time series are measurement errors in the data. We show that this influence can be quite severe, depending on the nature of the noise, the complexity of the signal, and on the application one has in mind. Theoretical considerations yield general upper bounds on the tolerable noise level for dimension, entropy and Lyapunov estimates. We discuss methods to detect and analyze the noise present in a measured data set. We show how the situation can be improved by nonlinear noise reduction. (c) 1995 American Institute of Physics.

[1]  Martin Casdagli,et al.  Nonlinear Modeling And Forecasting , 1992 .

[2]  Farmer,et al.  Predicting chaotic time series. , 1987, Physical review letters.

[3]  Holger Kantz,et al.  Repellers, semi-attractors, and long-lived chaotic transients , 1985 .

[4]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[5]  P. Grassberger,et al.  Characterization of Strange Attractors , 1983 .

[6]  Broggi,et al.  Dimension increase in filtered chaotic signals. , 1988, Physical review letters.

[7]  J. Doyne Farmer,et al.  Exploiting Chaos to Predict the Future and Reduce Noise , 1989 .

[8]  Schreiber Determination of the noise level of chaotic time series. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[9]  P. Grassberger,et al.  On noise reduction methods for chaotic data. , 1993, Chaos.

[10]  Eric J. Kostelich,et al.  Problems in estimating dynamics from data , 1992 .

[11]  P. Grassberger,et al.  A simple noise-reduction method for real data , 1991 .

[12]  Kantz Quantifying the closeness of fractal measures. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  P. Grassberger,et al.  NONLINEAR TIME SEQUENCE ANALYSIS , 1991 .

[14]  James B. Kadtke,et al.  GLOBAL NONLINEAR NOISE REDUCTION USING RADIAL BASIS FUNCTIONS , 1993 .

[15]  P. Grassberger,et al.  Estimation of the Kolmogorov entropy from a chaotic signal , 1983 .

[16]  Parisi,et al.  Topological and metric analysis of heteroclinic crisis in laser chaos. , 1992, Physical review letters.

[17]  Eckmann,et al.  Liapunov exponents from time series. , 1986, Physical review. A, General physics.

[18]  Schreiber,et al.  Nonlinear noise reduction: A case study on experimental data. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  R. Gencay,et al.  An algorithm for the n Lyapunov exponents of an n -dimensional unknown dynamical system , 1992 .

[20]  Hsu,et al.  Local-geometric-projection method for noise reduction in chaotic maps and flows. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[21]  K. Ikeda Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system , 1979 .

[22]  D. Broomhead,et al.  Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks , 1988 .

[23]  Cohen,et al.  Computing the Kolmogorov entropy from time signals of dissipative and conservative dynamical systems. , 1985, Physical review. A, General physics.

[24]  Editors , 1986, Brain Research Bulletin.

[25]  Leonard A. Smith Identification and prediction of low dimensional dynamics , 1992 .

[26]  Martin Casdagli,et al.  Nonlinear prediction of chaotic time series , 1989 .

[27]  U. Parlitz,et al.  Lyapunov exponents from time series , 1991 .

[28]  H. Kantz A robust method to estimate the maximal Lyapunov exponent of a time series , 1994 .

[29]  Y. C. Lee,et al.  Evolution, Learning And Cognition , 1988 .

[30]  Brown,et al.  Computing the Lyapunov spectrum of a dynamical system from an observed time series. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[31]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[32]  Brun,et al.  Model identification by periodic-orbit analysis for NMR-laser chaos. , 1991, Physical review letters.

[33]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[34]  Sawada,et al.  Measurement of the Lyapunov spectrum from a chaotic time series. , 1985, Physical review letters.

[35]  M. Rosenstein,et al.  A practical method for calculating largest Lyapunov exponents from small data sets , 1993 .

[36]  Yorke,et al.  Noise reduction in dynamical systems. , 1988, Physical review. A, General physics.

[37]  H. Kantz,et al.  Dimension estimates and physiological data. , 1995, Chaos.

[38]  T. Sauer A noise reduction method for signals from nonlinear systems , 1992 .

[39]  Schreiber,et al.  Noise reduction in chaotic time-series data: A survey of common methods. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[40]  Ulrich Parlitz,et al.  Identification of True and Spurious Lyapunov Exponents from Time Series , 1992 .

[41]  J. D. Farmer,et al.  State space reconstruction in the presence of noise" Physica D , 1991 .

[42]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory , 1980 .

[43]  Schreiber,et al.  Extremely simple nonlinear noise-reduction method. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[44]  David S. Broomhead,et al.  Multivariable Functional Interpolation and Adaptive Networks , 1988, Complex Syst..